FISEVIER

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Energetic and economic performance analyses of photovoltaic, parabolic trough collector and wind energy systems for Multan. Pakistan

S.M. Sajed Sadati, Fassahat Ullah Oureshi, Derek Baker*

Sustainable Environment and Energy Systems (SEES), Middle East Technical University, Northern Cyprus Campus (METU NCC), Ankara, Turkey

ARTICLE INFO

Article history: Received 16 November 2014 Received in revised form 10 February 2015 Accepted 8 March 2015

Keywords:
Photovoltaic
Parabolic trough collectors
Wind energy
Levelized cost of energy
Pakistan

ABSTRACT

Pakistan is going through a severe energy crisis due to an increasing gap between demand and supply. Its current energy needs are heavily dependent upon conventional thermal power plants which mainly use oil and gas. In addition to the economic problems associated with importing oil for Pakistan, the burning of fossil fuels for the production of electricity releases vast amounts of greenhouse gases. As an alternative to the current scenario, in this paper the energetic and economic performance of green energy technologies such as photovoltaic (PV), parabolic trough collector (PTC) with and without storage, and wind energy systems are analyzed and compared with respect to their potential for electricity generation for the city of Multan, Pakistan. Each system is designed taking a nominal 10 MWe capacity as a reference. Hourly meteorological data are used to estimate hourly insolation on a fixed PV module and for PTC's with East-West and North-South tracking. Results show that PV and PTC systems without storage have approximately the same output with capacity factors of approximately 20%. The electrical energy output of the wind turbines was very low with a capacity factor of \sim 2%. PTC's with 7.5 h storage and a solar multiple of 3.5 showed the best result for electrical energy output with a capacity factor of 46%. A cost analysis is performed assuming a 30 year lifetime for PV and a 35 year lifetime for PTC. The Levelized Cost of Electricity (LCOE) is found to be 0.192 USD/kWh for PV systems, 0.273 USD/kWh for PTC systems without storage, and 0.226 USD/kWh for PTC systems with 7.5 h of storage. The results of the economic study show that based strictly on economic considerations green energy technologies can be utilized if the government supports the investment by giving incentives and subsidies.

© 2015 Elsevier Ltd. All rights reserved.

Contents

Introd	ductionduction	845
Metho	odology	848
2.1.	Meteorological model	848
	PV energetic model	848
2.3.	PTC energetic model	849
	2.3.1. Thermal storage energetic model for PTC system	850
2.4.	Wind turbine energetic model	850
2.5.	Capacity factor model	851
2.6.	Cost analysis for PTC and PV power plants	851
	2.6.1. Initial costs.	851
	2.6.2. Annual costs	851
	2.6.3. Financial factors	851
Result	ts and discussion.	851
3.1.	Energetic results	851
3.2.	Capacity factor results	853
	Meth 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. Resul 3.1.	2.2. PV energetic model 2.3. PTC energetic model 2.3.1. Thermal storage energetic model for PTC system 2.4. Wind turbine energetic model 2.5. Capacity factor model 2.6. Cost analysis for PTC and PV power plants 2.6.1. Initial costs. 2.6.2. Annual costs. 2.6.3. Financial factors. Results and discussion. 3.1. Energetic results

^{*} Correspondence to: Mech. Engr. E-105, Middle East Technical University, 06800 Ankara, Turkey. Tel.: +90 312 210 5217; fax: +90 312 210 2536. E-mail addresses: sajed.sadati@metu.edu.tr (S.M.S. Sadati), fassahat.qureshi@metu.edu.tr (F.U. Qureshi), dbaker@metu.edu.tr (D. Baker).

	3.3.	Cost analysis results	853
4.	Conclu	usions	854
Ack	nowled	lgment	854
Refe	erences		854

Nomenclature			focal length of collectors (m) universal von Kármán constant	
A	total area of photovoltaic solar plant (m ²)	k n	lifetime of power plant (years)	
A_0	total area of CSP solar power plant (m ²)	r	discount rate	
$A_{\rm coll}$	parabolic trough collector area (m ²)	t	number of the years in LCOE calculation	
E	electrical energy output (Wh)	$t_{ m stor}$	storage size in hours (h)	
max ptc	maximum electrical energy output of PTC system			
Ξ_t	annual energy output (Wh)	Indices		
\vec{r}_t	annual fuel cost (USD)			
std	standard photovoltaic reference irradiation (W m ⁻²)	AEDB	Alternative Energy Development Board	
	initial investment (USD)	CF	capacity factor	
b,n	beam insolation normal to the mirror (Wh m^{-2})	CSP	concentrating solar power	
PV	hourly insolation in the orientation of solar panel	DNI	direct normal insolation (kWh m^{-2} day ⁻¹)	
	$(Wh m^{-2})$	EW	east west	
-SCA	length of a single solar collector assembly (m)	IEA	International Energy Agency	
spacing	length of spacing between troughs (m)	IRENA	International Renewable Energy Agency	
M_s	solar multiple (dimensionless)	LCOE	Levelized Cost of Electricity (USD/kWh)	
M_t	annual maintenance cost (USD)	NREL	National Renewable Energy Laboratory	
installed	rated power capacity of the power plant (MW)	NS	north south	
output,A =	$_{=1}$ maximum output of the model with $A=1$ m ² (W)	PTC	parabolic trough collector	
$^{D}_{R}$	performance ratio	PV	photovoltaic	
Q_{coll}	thermal energy collected by the trough	TES	thermal energy storage	
	collectors (Wh)	TMY	typical meteorological year	
2 _{HE}	thermal energy available for heat engine (Wh)			
$2_{\rm HE}^{\rm max}$	maximum thermal energy capacity of heat	Greek le	Greek letters	
- may	engine (Wh)			
2 _{stor}	storage size in units of energy (Wh)	$\eta_{ ext{HE}}$	efficiency of heat engine	
Stored	thermal energy stored (Wh)	η_P	solar cell efficiency	
J*	friction velocity (m s ⁻¹)	$\eta_{ m total}$	total efficiency of the PTC system	
J_z	wind speed at an elevation of z meters (m s ⁻¹)	$\eta_{ m st}$	efficiency of thermal energy storage systems	
N AZ	collector aperture width (m)	θ	angle of incidence (radians)	
$N_{ m eff}$	effective width of mirror aperture (m)	θ_Z	solar zenith angle (radians)	
	elevation (m) roughness length (m)			

1. Introduction

Renewable energy technologies are playing an increasingly important role in the sustainable development and well-being of states as fossil fuel resources are being depleted throughout the world. Wind and solar energy resources are considered to be two of the most important sustainable energy resources in the world [1]. The worldwide growing demand for sustainable energy has been investigated in a large number of studies [2-6]. The global growth trend of renewable energy technologies in 2011 was explored in [7] by Awan et al., and according to it the largest growth rate is for PV which is 74% followed by Concentrated Solar Power (CSP) with 35%, solar water heating with 27%, wind power technology with 20% and then biodiesel with 16%. Other renewable technologies have a growth rate which is less than 3%. The present share of renewable energy sources in power generation was only 5% in 2011 as shown in Fig. 1. According to this figure, the largest share in global power generation scenario is from fossil fuels and nuclear which are contributing 77.9%, followed by

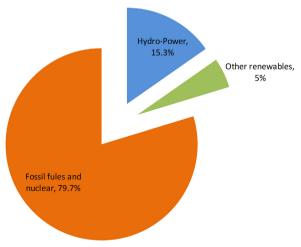


Fig. 1. Global share of resources in electrical power generation. Adapted from [8].

Download English Version:

https://daneshyari.com/en/article/8116903

Download Persian Version:

https://daneshyari.com/article/8116903

<u>Daneshyari.com</u>