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a b s t r a c t

As the energy crisis becomes a greater concern, wind energy, as one of the most promising renewable
energy resources, becomes more widely used. Thus, wind energy forecasting plays an important role in
wind energy utilization, especially wind speed forecasting, which is a vital component of wind energy
management. In view of its importance, numerous wind speed forecasts have been proposed, each with
advantages and disadvantages. Searching for more effective wind speed forecasts in wind energy
management is a challenging task. As proposed, combined models have desirable forecasting abilities for
wind speed. This paper reviewed the combined models for wind speed predictions and classified the
combined wind speed forecasting approaches. To further study the combined models, two combination
models, the no negative constraint theory (NNCT) combination model and the artificial intelligence
algorithm combination model, are proposed. The hourly average wind speed data of three wind turbines
in the Chengde region of China are used to illustrate the effectiveness of the proposed combination
models, and the results show that the proposed combination models can always provide desirable
forecasting results compared to the existing traditional combination models.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Energy is critically important to the social and economic
development of any nation. With the increasing industrial and
economic activity over the last several decades, energy demands
have grown rapidly [1]. According to the IEA World Energy Outlook
2010, the energy demands of China and India will account for half
of the growth in global energy demands by 2050. At that point,
China's energy consumption will be nearly 70% greater than that of
the United States, the second greatest energy-consuming country,
thus placing China as the leading energy-consuming country in
the world. However, China's per capita energy consumption will
still be less than half that of the United States [2]. With increasing
demands for energy, traditional resources such as oil and coal
remain the dominant sources of energy worldwide. However, the
use of traditional resources results in the release of significant
amounts of carbon dioxide, which causes serious environmental
problems, especially with respect to climate change. Climate
change has been recognized as an international security threat,
and as such, it no longer relates only to quality of life and the
environment, but it also directly affects human and global security
[3]. Energy crises and climate change make renewable energy
necessary. Hydroelectric, wind, biomass, solar, terrestrial heat,
clean coal and nuclear energies are rapidly being developed. As a
clean energy source and because of its low cost of production,
wind energy is often viewed as an attractive energy option.
Accordingly, wind energy has achieved maturity in the energy
market and, compared to the aforementioned alternatives, has
experienced the greatest growth worldwide in the past several
decades. Being both convenient and environmentally friendly,
wind energy meets the growing demand for electricity. Further-
more, with the cost of electricity from non-renewable sources
continuing to increase, wind energy is becoming increasingly
competitive [4].

Introduced 20 years ago, China became one of the world's first
countries to use wind energy to generate electricity, and its
development since then has been rapid. In June 2012, China's
grid-connected wind power reached 52.58 million kilowatts (KW),
surpassing that of the United States, the country that previously
ranked first in the world in wind energy capacity with a cumula-
tive installed capacity of 44,733.29 MW (MW). In China's national
power grid, dispatch reached 50.26 million kilowatts (kW), mak-
ing it the largest global wind power grid and the fastest growing
power grid [5]. Reaching 60.83 million kilowatts in 2012, China's
total wind power grid has been ranked first in the world for two
consecutive years. Wind power accounts for 2% of the country's
total generating capacity with an annual generating capacity of
over 100 billion kilowatts (kW). Thus, wind power has become
the third largest source of power and plays a prominent role in
optimizing the energy structure and promoting energy conser-
vation in China [6]. Given that wind power generation depends
on wind speed, the main problem with wind power is that the

wind speed is subject to significant fluctuations that are harmful
to the wind turbines. Because the fluctuating wind speeds must
then be processed and used to generate power, obtaining
accurate wind speeds is important. However, because wind
is air motion whose driving force is due to the uneven heating
and cooling of the earth's surface and the occurrence of wind
is highly uncertain in time and space because it depends on
many weather factors such as pressure and temperature, obtain-
ing accurate forecasting results for wind speed can be challen-
ging [7].

Accordingly, many significant studies have been devoted to
developing efficient forecasts for wind speed that can be divided
into two categories. The first is the physical method that uses
numerous physical considerations for the best forecasting accuracy.
The second is the statistical method that aims at finding the
relationship between the online measured power data, including
traditional statistical models (such as ARIMA models, ARCH mod-
els, Kalman Fitters (KF) etc.) and machine learning (ML) models.
Artificial neural networks (ANNs), as a class of methods in ML
models, have been widely used in a broad range of applications [8].
Moreover, ANNs are improved and combined with other methods
for improved prediction accuracy. The ANN with a statistical
weighted pre-processing method (SWP–ANN) can be used to
predict ground source heat pump (GCHP) systems with the mini-
mum data set, and the simulation results show that SWP–ANN
performs better than ANN [9]. Fuzzy models can be combined with
ANNs to create ANFIS, which demonstrate reliable forecasting
applicability [10]. However, ANNs do not always perform well,
and at times the proposed wavelet neural network (WNN) does
better than ANN [11]. ANNs are also widely used in wind speed
prediction where their performance depends on the training data
sets [12]. Support vector machine (SVM), another ML method, has
had rapid development in recent years, and its performance proved
to be desirable. For example, SVM has been shown to have
excellent performance compared to an ANN model and an ANFIS
model [13]. The least-squares support vector machine (LS-SVM)
method can be used to make a modeling study of the solar air
heater (SAH) system and for estimating the efficiency of SAHs with
reasonable accuracy [14]. Moreover, some hybrid wind speed
forecasts have also been put forward [7,9]. Though the statistical
method is more seasonal to forecast wind speed compared to
the physical method, it does not always capture the relationship
between different data and obtain accurate forecasting results.
Therefore, some hybrid wind speed forecasts are proposed;
when compared with individual forecasts, the hybrid forecasts
have demonstrated outstanding forecasting results. However,
hybrid forecasts are based on only two or three indivi-
dual forecasts. When more individual forecasts are included,
using hybrid forecasts becomes difficult. Therefore, to make full
use of the advantages of individual forecasts while not increas-
ing the simulation difficulties, combination forecasts have been
proposed.
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