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known electrical damping circuits are categorized, described and compared. The hydrodynamic damping
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of the buoy is covered, and how a linear generator can be used as a power take-off unit to apply a
damping force. A qualitative comparison of the circuits is presented in the end. A more complex and

Ke)_’WOTdS-' costly power electronics system may be viable for wave energy converters (WECs) of large-scale power
Pf"“t'absorber rating. However, for farm operation with small-scale WECs, a simpler and passive damping may be more
Linear generator (LG) suitable
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1. Introduction

In the quest for harvesting renewable energy sources, the
energy potential of the world's oceans have gained an increasing
interest for the past two decades. Today, there are around 100 on-
going projects at various stages of development, and the number
keeps increasing. A review on the most prominent technologies is
found in [1]. There are various ways of categorizing the types of
wave energy converter (WEC) devices, as first described by Hager-
man [2]. The most popular of these is the categorization by
method of absorbing the energy, where there are three categories:
the overtopping device, the oscillating water column and the
oscillating (activated) body. The last one can be further divided
into three sub-categories, based upon the direction of the radia-
tion force. These are the point-absorbers, the attenuators and the
terminators. The point-absorber is defined as having a device
width much smaller than the wavelength of the incoming waves.
The power take-off (PTO) unit may be hydraulic, pneumatic or
electric, and the PTO can either be floating, submerged or installed
on the seabed. In this paper, the PTO with all-electric conversion
using a linear generator (LG) is considered.

Among the point-absorber projects that have reached the stage
of offshore device testing, the Uppsala University project [3,4]
and the Oregon project [5,6] are both based on a floating buoy
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Fig. 1. Example of the point-absorber concept developed at Uppsala University. The
floating buoy is moving in heave motion, and transfers the power to the linear
generator on the sea bed. The translator of the generator is directly driven, without
use of gearbox.

connected to a LG. The Archimedes Wave Swing (AWS) [7] is
instead submerged below the sea level to utilize the pressure
differences from the waves. The basic concept from Uppsala
University is displayed in Fig. 1.

To make the point-absorber a viable alternative, the proper
damping force has to be applied. Many point-absorber concepts are
based on pneumatic or hydraulic damping, as described in [8]. The
pressurized medium is then used together with a gearbox to drive a
high-speed rotational generator. The drawback of a hydraulic PTO is
high mechanical stress, losses in the different conversion stages and
reduced reliability. As an alternative, the direct-driven linear gen-
erator has been suggested as PTO. This offers a more robust design
with better conversion efficiency. However, the slow, reciprocating
speed of translator results in relatively large units even at modest
power levels. Also, the increased external forces require a mechani-
cally very robust structure.

1.1. Control objectives

There can be several control objectives for a farm of aggregated
point-absorber WECs. These include

1. Handle sudden extreme forces [9].

2. Maximum power point tracking (MPPT) of the individual WECs
as well as the overall WEC farm [10].

3. Grid-connection control schemes of wave farms [11,12].

Most projects are still in the individual device testing stage,
making MPPT a key research point. It is probable that lifetime
studies and wave farm studies will increase in the near future.
In this paper, electrical strategies for MPPT are in focus.

1.2. Different time scales of the control

If some active or passive control strategy is adapted for the
WEG, it can be categorized by the time-scale of the control. The
time range can be very wide, from seasonal variations to indivi-
dual wave control:

® Seasonal sea state fluctuations [13]: It is possible to tune the
WEC parameters for the dominant wave frequency and wave
height, as discussed in [14].

® Daily fluctuations: The most prominent sea state changes with
daily cycles are due to the tidal effects, which will have a great
impact on the WEC power absorption [15]. One suggested
technique to cope with this is developed in [16]. It is also
possible to tune the natural frequency of the WEC by e.g. using
water ballasts, as suggested in [17].

® Hourly control: This is more sensitive to the current sea state
which may change in cycles of several hours or faster. Control
in this time range is often referred to as slow tuning. The
average sea state parameters are detected, and used as an input
for the control strategy.
Wave-to-wave control: This is a real-time control strategy,
where an active damping is applied within the wave cycles.
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