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Article history: The increasing production of modern bioenergy carriers and biomaterials intensifies the competition for
Received 19 November 2012 different applications of biomass. To be able to optimize and develop biomass utilization in a sustainable
Received in revised form way, this paper first reviews the status and prospects of biomass value chains for heat, power, fuels and
23 July 2014 materials, next assesses their current and long-term levelized production costs and avoided emissions,

Accepted 30 July 2014 and then compares their greenhouse gas abatement costs. At present, the economically and envir-

onmentally preferred options are wood chip and pellet combustion in district heating systems and large-
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Technology review
Production costs
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role in reducing the costs and improving the emission balance of biomass value chains. Key conversion
technologies for lignocellulosic biomass are large-scale gasification (bioenergy and biomaterials) and
fermentation (biofuels and biomaterials). However, both routes require improvement of their techno-
logical and economic performance. Further improvements can be attained by biorefineries that integrate
different conversion technologies to maximize the use of all biomass components.
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1. Introduction

In the last decade, biomass use for the production of modern
bioenergy and biomaterials grew significantly in order to oppose
the depletion of fossil resources (and associated increasing energy
prices) and to reduce greenhouse gas (GHG) emissions [1]. For
both energy and material application of biomass, it is expected
that this growth will continue or even accelerate. For example, the
Intergovernmental Panel on Climate Change (IPCC) reviewed
recent literature and scenarios on long-term biomass deployment
potentials and biomass demand for bioenergy [2,3]. In 2008, global
bioenergy use accounted for a primary biomass supply of 50
exajoule (E]Jp) per year. By 2050, the global biomass demand for
bioenergy is projected to reach about 77 EJ,/year in the absence of
climate policies (median case of baseline scenarios) and about
155 EJp/year under the most stringent GHG mitigation scenarios
[3]. In addition, Saygin et al. [4] estimate an economic potential of

biomass use of almost 20 E]y/year for substitution of synthetic
organic material in the chemical industry in 2050. Hence, a total
biomass supply of 100-175 EJ/year would be required to meet the
projected demand for both bioenergy and biomaterials in 2050. By
the same year, the technical biomass deployment potential is
estimated to be in the range of 100-300 EJ,/year [2].

The increasing demand for biomass will intensify the competi-
tion between biomass feedstocks as well as their applications; not
only between food and non-food uses, but also between non-food
applications for energy and materials. Thus, to ensure sustainable
expansion of biomass use, we need insight in which routes
(biomass value chains) are the most promising for producing heat,
power, fuels and materials in terms of their technological, eco-
nomic and environmental performance. This requires (i) a clear
view on the status and prospects of potential value chains; and (ii)
assessment and comparison of their economic and environmental
performance in the short and longer term. Assessment of the
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