Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines

Amir-Hasan Kakaee, Amin Paykani*, Mostafa Ghajar

School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran

ARTICLE INFO

ABSTRACT

Article history: Received 11 July 2013 Received in revised form 19 April 2014 Accepted 21 May 2014

Keywords: Natural gas composition Performance Emissions Wobbe number SI engine CI engine As global energy demand rises, natural gas (NG) plays an important strategic role in energy supply. Natural gas is the cleanest fossil fuel that has been investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. This paper reviews the research on the effects of natural gas composition on combustion and emission characteristics of natural gas fueled internal combustion engines (ICEs) and reports the most achievements obtained by researchers in this field. It has been reported that the engine performance and emission are greatly affected by varying compositions of natural gas. The most important NG fuel property is the Wobbe number (WN). Generally, it was agreed by researchers that the fuels with higher hydrocarbons, higher WN, and higher energy content exhibited better fuel economy and carbon dioxide (CO_2) emissions. Nitrogen oxides (NO_x) emissions were also increased for gases with higher levels of higher WN, while total hydrocarbons (THCs), carbon monoxide (CO), showed some reductions for these gases. On the other hand, particulate matter (PM) emissions did not show any fuel effects. Moreover, adding of small fractions of higher alkanes, such as ethane and propane, significantly improved ignition qualities of natural gas engines. The results presented provide a good insight for researchers to pursue their future research on natural gas fueled ICEs.

© 2014 Elsevier Ltd. All rights reserved.

Contents

	Introduction	
	Implication of natural gas composition in ICEs	
	3.1. Natural gas composition effects in SI engines	
	3.2. Natural gas composition effects in CI, dual fuel and HCCI engines	69
4.	Summary and conclusions	. 76
Ref	ferences	. 77

1. Introduction

In recent years, shortages of crude oil, increasing of fossil fuel prices and the tightening of environmental regulations have led to development of alternative fuels application in internal combustion engines. Natural gas is one of such fuels available in large quantities in many parts of the world at attractive prices. Natural gas

http://dx.doi.org/10.1016/j.rser.2014.05.080 1364-0321/© 2014 Elsevier Ltd. All rights reserved. consumption is forecasted to be doubled between 2001 and 2025, with the most robust growth in demand expected among the developing nations [1]. As shown in Fig. 1, the share of NG has been progressively increased within the energy market in the past three decades [2]. Natural gas is a potential alternative to conventional liquid fuels (i.e. gasoline and diesel) for use in automotive engines [3–7]. Natural gas is a mixture of various hydrocarbon molecules. Commercial natural-gas compositions vary from 85% to 96% methane. NG also contains heavier hydrocarbons such as ethane (C_2H_6), propane (C_3H_8), and butane (C_4H_{10}), and inert diluents such as molecular nitrogen (N_2) and carbon dioxide (CO_2). Sulfur compounds and other hydrocarbon species are also available within NG.

^{*} Corresponding author. Tel: +98 939 7905698.

E-mail addresses: kakaee_ah@iust.ac.ir (A.-H. Kakaee), paykani@iust.ac.ir (A. Paykani).

Nomenclature			effective on-board energy
Greek		TWC PN	three-way catalyst
		CP	particle number combustion potential
φ	equivalence ratio	HHV	higher heating value
,	1	LHV	lower heating value
Abbrevia	iations		specific gravity
1.5510110		SG IANGVs	
SI	spark ignition	LPG	liquefied petroleum gas
CI	compression ignition	HCCI	homogeneous charge compression ignition
NG	natural gas		air-fuel ratio
ICE	internal combustion engines	SOC	start of the combustion
THC	total hydrocarbon	TDC	top dead center
NO _x	nitrogen oxides	NH ₃	ammonia
PM	particulate matter	CA	crank angle
NMHC	non-methane hydrocarbons	BSFC	brake specific fuel consumption
НСНО	formaldehyde	BMEP	brake mean effective pressure
CNG	compressed natural gas	DI	direct injection
NGV	natural gas vehicles	IDI	indirect injection
WN	Wobbe number	DF	dual fuel
MN	methane number	RTC	refuse truck cycle
CARB	California air resources board	CBD	central business district
RPM	revolutions per minute	FTP	federal test procedure
WOT	wide open throttle	DME	dimethyl ether
EGR	exhaust gas recirculation		

The geographical source, time of year, and treatments applied during production or transportation have great influence on levels of these species [8–12]. The typical composition of natural gas in percentage is illustrated in Fig. 2. Therefore, natural gas does not describe a single type of fuel or a narrow range of characteristics.

Natural gas is a clean burning fuel as compared to the conventional liquid fuels like diesel or gasoline. It has a high octane number and therefore it is suitable for engines with relatively high compression ratio. It has a high self-ignition temperature, so it requires intense source of energy to enable combustion, i.e. glow plug, spark plug or pilot liquid fuel. It mixes rapidly with air to form homogenous air fuel mixture for efficient combustion inside engine cylinder and substantial reduction in harmful emissions [13,14]. A number of research works have been conducted in the literature on utilization of natural gas in SI and CI engines. Comparing natural gas and diesel engine emissions, it was found that natural gas fueled SI engine emissions of total hydrocarbon

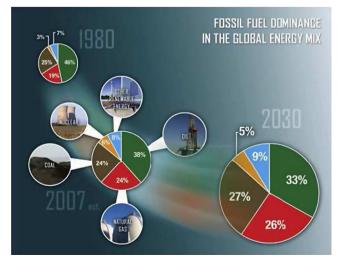


Fig. 1. The share of World energy, past, present and future [2].

(THC), nitrogen oxides (NO_x), and particulate matter (PM) were significantly lower than that of the diesel fueled engine. In addition, another study showed that natural gas SI engines have the potential to achieve a reduction in carbon monoxide (CO), CO₂, NO_x, and non-methane hydrocarbon emissions compared to gasoline engine emissions [5,15–18]. The number of compressed

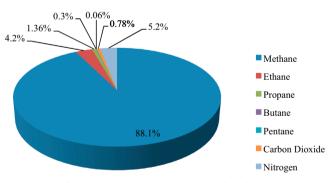


Fig. 2. Typical natural gas composition by volume.

ole	1			
		6		

Tab

Properties of natural gas, gasoline and diesel fuels [18].

Fuel property	Gasoline	Diesel	CNG
Chemical formula	C ₄ -C ₁₂	C ₄ -C ₁₂	CH ₄
Molar mass (g/mole)	114	170	19
Carbon content (%)	85	86	75
Hydrogen content (%)	15	14	25
Oxygen content (%)	0	0	0
Carbon-to-hydrogen ratio	0.54	0.516	0.25
Cetane number	5-20	40-50	-
Octane number	86-94	-	> 120
Auto-ignition temperature (K)	533	483	853
Stoichiometric air/fuel mass ratio	14.7	14.6	17.2
Boiling point at 1 atm (K)	300-498	450-643	111.4
Lower heating value (MJ/kg)	43.44	42.5	47.14
Liquid density (kg/m3)	737	831	465

Download English Version:

https://daneshyari.com/en/article/8119417

Download Persian Version:

https://daneshyari.com/article/8119417

Daneshyari.com