

#### Contents lists available at ScienceDirect

### Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser



# CO<sub>2</sub> emission reduction by reuse of building material waste in the Japanese cement industry



Da-Young Oh <sup>a</sup>, Takafumi Noguchi <sup>a</sup>, Ryoma Kitagaki <sup>a</sup>, Won-Jun Park <sup>b,\*</sup>

- <sup>a</sup> Department of Architecture, The University of Tokyo, Hongo 7-3-1, Tokyo, Japan
- <sup>b</sup> Sustainable Building Research Center, Hanyang University, Sangnok-gu 1271, Ansan, Republic of Korea

#### ARTICLE INFO

# Article history: Received 3 January 2014 Received in revised form 23 May 2014 Accepted 6 July 2014 Available online 24 July 2014

Keywords: CO<sub>2</sub> emission reduction Cement industry Recycling and reusing Building material waste

#### ABSTRACT

CO<sub>2</sub> emitted from calcination processes in kilns comprises 60% of all emissions from cement production. The chemical components of building materials, demolished inorganic building materials (DIBMs), and waste concrete powder (WCP) are similar to those of cement minerals. Therefore, if DIBMs are used as a cement substitute material along with limestone, the quantity of disposed waste and the use of limestone will likely be reduced, as will CO<sub>2</sub> emissions during cement production. This study proposes a recycling method for recycled cement, using DIBMs and WCP as cement substitute materials, and the properties of trial recycled cement were evaluated. The mortar specimen using recycled cement showed a high compressive strength, as did the ordinary Portland cement mortar. According to the proposed composition, the producible recycled cement was derived from 0.5% to 9.1% of annual cement production (about 57.6 million tons) in Japan. Additionally, the CO<sub>2</sub> reduction by usage of recycled cement ranged from 0.06 million tons to 0.72 million tons from the total annual CO<sub>2</sub> emissions from cement production (about 29.4 million tons), using natural resources in Japan.

© 2014 Elsevier Ltd. All rights reserved.

#### **Contents**

| 1. | Intro             | duction            |                                                                        | 797 |
|----|-------------------|--------------------|------------------------------------------------------------------------|-----|
|    | 1.1.              | CO <sub>2</sub> em | issions in the cement industry                                         | 797 |
|    | 1.2.              | Reducir            | ng $CO_2$ emissions by reusing waste building materials                | 797 |
| 2. | Estin             | nation of l        | DIBM waste                                                             | 799 |
|    | 2.1.              | Estimat            | ion method                                                             | 799 |
|    | 2.2.              | Estimat            | ion of the amount of waste generated                                   | 799 |
|    |                   | 2.2.1.             | Input units of building materials                                      | 799 |
|    |                   | 2.2.2.             | Estimation of the service life of a building.                          | 801 |
|    |                   | 2.2.3.             | Estimation of waste quantity                                           | 801 |
| 3. | Manı              | ufacturing         | of cement with DIBM as substitute materials and performance evaluation | 802 |
|    | 3.1.              | Proposa            | al and manufacturing of material combinations of recycled cement       | 803 |
|    | 3.2.              | Perform            | nance evaluation of recycled cement                                    | 804 |
|    |                   | 3.2.1.             | Chemical features of recycled cement                                   | 804 |
|    |                   | 3.2.2.             | Physical features of recycled cement                                   | 805 |
|    |                   | 3.2.3.             | Mechanical properties of produced mortar using recycled cement         | 805 |
| 4. | CO <sub>2</sub> r | reduction          | by the production of recycled cement                                   | 805 |
|    | 4.1.              | Estimat            | ion of the producible amounts of recycled cement                       | 805 |
|    |                   | 4.1.1.             | Producible recycled cement with WCP (Mix 1)                            | 805 |
|    |                   | 4.1.2.             | Producible recycled cement with CS and CSB (Mix 2).                    | 806 |
|    |                   | 413                | Producible recycled cement with CSR brick, and oxidized steel (Mix 3)  | 806 |

<sup>\*</sup> Corresponding author. Tel.: +82 31 400 4113; fax: +82 31 436 8169. E-mail address: jooney1010@hanyang.ac.kr (W.-J. Park).

| 4.1.4. Producible recycled cement with ALC, tile, and CS (Mix 4)                                | 806 |
|-------------------------------------------------------------------------------------------------|-----|
| 4.2. Quantity of CO <sub>2</sub> emissions from production of recycled cement.                  | 806 |
| 4.2.1. Recycled cement with WCP (39%) and limestone (61%)                                       | 806 |
| 4.2.2. Recycled cement with CS (20%), CSB (50%), and limestone (30%)                            | 807 |
| 4.2.3. Recycled cement with CSB (41.5%), brick (5%), limestone (52%), and oxidized steel (1.5%) | 807 |
| 4.2.4. Recycled cement with ALC (18%), tile (10%), CS (10%), and limestone (62%).               | 807 |
| 5. Conclusions                                                                                  | 808 |
| Acknowledgment                                                                                  | 808 |
| Appendix A.                                                                                     | 808 |
| References                                                                                      | 809 |

#### 1. Introduction

#### 1.1. CO<sub>2</sub> emissions in the cement industry

The industrial sector is responsible for 30–70% [1–9] of the total global energy consumption and CO<sub>2</sub> emissions; the countries with the highest CO<sub>2</sub> emissions are shown in Fig. 1 [1]. The cement industry is one of the major contributors to greenhouse gas emissions, specifically that of CO<sub>2</sub>, and consumes about 12-15% of total industrial energy usage [3]. Therefore, the cement industry contributes about 7% of the total worldwide CO2 emissions as a result of fossil fuel burning (about 1.8 Gt of CO<sub>2</sub> emissions annually) [4]. This is due to the calcination of raw materials for the production of cement and the burning of fuels needed to maintain high temperatures in a kiln [5]. The world demand for cement was 2283 million tons (Mt) in 2005, and China accounted for about 47% of the total demand. It is predicted that the demand will increase to about 2836 Mt in the year 2010 [6]. It was also reported that China, India, the United States, and Japan produce the largest quantities of cement, globally (Table 1) [6-8].

Therefore,  $CO_2$  emission reduction in the cement industry is of importance. Focusing on cement materials and energies, some alternative techniques that can reduce  $CO_2$  emissions in cement manufacturing are outlined below [5,9–15]

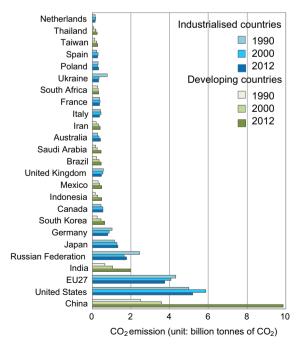



Fig. 1. Largest CO<sub>2</sub>-emitting countries [2].

- use of waste heat as an alternative source of energy;
- use of blended cement by reducing the clinker/cement ratio;
- preparation of the raw mixture with non-carbonated calcium;
- use of alternative raw materials that contain carbonates (e.g., fly ash, blast furnace slag, and inorganic building materials).

#### 1.2. Reducing CO<sub>2</sub> emissions by reusing waste building materials

The existing research is focused mainly on the technical, economic, and environmental effects of the use of industrial solid waste as alternative energies, fuels, and raw materials in the cement industry [9–17]. Among the various CO<sub>2</sub> reduction techniques, this study focuses on the use of alternative raw materials that contain carbonates (waste concrete powder and inorganic building material wastes) as a cement substitute material. HuXing [18] and Puertas [19] confirmed the technical viability of utilizing certain types of sludge and waste building materials as raw materials in the mixes used to manufacture Portland cement clinker.

Considering the fact that the chemical components of demolished inorganic building materials (DIBMs) and waste concrete powder (WCP) are very similar to the chemical composition of cement materials, both types could be used as raw materials in the manufacture of Portland cement clinker. The amount of waste discharged from the construction industry constitutes approximately 20% of all industrial wastes in Japan, and the space allotted

 Table 1

 Annual global cement production statistics (million tons) [1,6,8].

| Country                   | 2003  | 2005   | 2007   | 2009   | 2011   | 2012   |
|---------------------------|-------|--------|--------|--------|--------|--------|
| China                     | 865.2 | 1079.6 | 1377.8 | 1637.1 | 2100.0 | 2150.0 |
| India                     | 126.7 | 146.8  | 172.9  | 193.1  | 240.0  | 250.0  |
| United states             | 92.9  | 99.4   | 95.5   | 71.9   | 68.6   | 74.0   |
| Japan                     | 73.8  | 72.7   | 71.4   | 59.6   | 51.3   | 52.0   |
| Turkey                    | 38.1  | 45.6   | 50.8   | 57.6   | 63.4   | 60.0   |
| Iran                      | 30.5  | 32.6   | 40.0   | 56.3   | 61.0   | 65.0   |
| South Korea               | 59.7  | 49.1   | 54.4   | 52.2   | 48.3   | 49.0   |
| Brazil                    | 35.3  | 39.2   | 47.2   | 52.3   | 64.1   | 70.0   |
| Vietnam                   | 24.1  | 30.8   | 35.7   | 48.0   | 59.0   | 65.0   |
| Egypt                     | 32.7  | 38.9   | 40.1   | 46.9   | 44.0   | 44.0   |
| Russian Federation        | 41.4  | 49.5   | 59.9   | 47.2   | 55.6   | 60.0   |
| Indonesia                 | 34.9  | 36.1   | 39.9   | 39.7   | 30.0   | 31.0   |
| Saudi Arabia              | 24.1  | 26.1   | 30.3   | 37.8   | 48.4   | 43.0   |
| Thailand                  | 35.6  | 37.9   | 43.2   | 37.7   | 36.7   | 33.0   |
| Mexico                    | 31.8  | 36.7   | 39.9   | 37.1   | 35.4   | 36.0   |
| Italy                     | 43.5  | 46.4   | 47.5   | 36.2   | 33.1   | 32.0   |
| Spain                     | 44.8  | 50.3   | 54.7   | 30.6   | 22.2   | 20.0   |
| Germany                   | 33.6  | 31.9   | 33.4   | 30.4   | 33.5   | 34.0   |
| Pakistan                  | 11.3  | 15.8   | 26.3   | 30.9   | 32.0   | 32.0   |
| Other countries (rounded) | -     | -      | -      | -      | 470.0  | 500.0  |
| World total (rounded)     | -     | -      | -      | -      | 3600.0 | 3700.0 |

#### Download English Version:

## https://daneshyari.com/en/article/8119854

Download Persian Version:

https://daneshyari.com/article/8119854

Daneshyari.com