
Algorithms for optimization of building design: A review

Vasileios Machairas a,n, Aris Tsangrassoulis b, Kleo Axarli c

a Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
b Department of Architecture, University of Thessaly, Volos, Greece
c Department of Architecture, Aristotle University of Thessaloniki, Thessaloniki, Greece

a r t i c l e i n f o

Article history:
Received 12 January 2013
Received in revised form
24 September 2013
Accepted 18 November 2013
Available online 11 December 2013

Keywords:
Building
Design
Algorithms
Optimization
Review

a b s t r a c t

Building design is quite a complicated task with the design team trying to counterbalance various
antagonistic parameters, which in turn are subject to various constraints. Due to this complexity,
performance simulation tools are employed and as a consequence, optimization methods have just
started being used, mainly as a decision aid. There are examples, amongst the architectural community,
where probabilistic evolutionary algorithms or other derivative-free methods have been used with
various decision variables and objective goals. This paper is a review of the methods and tools used for
the building design optimization in an effort to explore the reasoning behind their selection, to present
their abilities and performance issues and to identify the key characteristics of their future versions.

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Building performance simulation tools have beenwidely used by
the research community, but only during the last decade, did they

begin to be used in the architectural design process. There are many
reasons for this delay, starting from the difficulty of using these
tools, the acquisition of necessary skills, their associated costs, the
uncertainty in the results and the general impression that the
designer is restricted by the limitations of the tools.

Nowadays, a large number of simulation tools do exist with
user friendly interfaces and a plethora of available training
material. With their use, design teams, after defining a number
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of decision parameters, can explore new designs which were not
accessible through the traditional approach. For example, current
legislative changes in Europe have led to the revision of national
building energy codes in order to include a more advanced
computational approach. Therefore, in most cases, compliance
with codes is the driving force behind their use, this fact does
not guarantee the optimization of building energy consumption.
Thus far, studies concerning the impact of various parameters on
building design have relied on parametric analyses which in turn
were based on detailed building simulations. The latter are
computationally expensive and using a brute force technique to
evaluate all possible solutions is not a viable process. It was the
need, therefore, to explore the solution space more efficiently and
fast that gave rise to the adoption of optimization techniques. It
has to be mentioned that the transfer of a real world design
problem into the mathematical domain has limitations and that
the commonly used optimization algorithms applied to building
design problems cannot ensure that the optimal solution will be
found. Nevertheless, better building performance may be obtained
compared to common practice where no optimization is used.
Therefore, the understanding of optimization method's strengths
and weaknesses is crucial in order for them to be used effectively
in related design problems.

Optimization is the procedure of finding the minimum or
maximum value of a function by choosing a number of variables
subject to a number of constraints. The optimization function is
called cost or fitness or objective function and is usually calculated
using simulation tools. Because of code features, the results may
be non-linear and have discontinuities, making necessary the use
of special optimization methods that don't require the computa-
tion of the derivatives of the function. Optimization methods can
be applied to a number of different building design problems such
as massing, orientation, façade design, thermal comfort, daylight-
ing, life cycle analysis, structural design analysis, energy and of
course cost. The structural design (i.e. selection of beam/columns
cross section) and building controls (operation/scheduling) opti-
mization are not part of the present review. However, in some of
the reviewed cases optimization of both building design and
setpoint scheduling or more advanced multi-disciplinary optimi-
zation was applied.

The review is separated into four major sections exploring
different viewpoints of the subject. The first section deals with the
optimization algorithms which have been utilized in building design
problems. The next one presents the optimization tools and some of
their characteristics. The third section lays out three building
performance evaluation methods that affect the optimization
approach differently and discusses the strengths and weaknesses
of each method. The forth section reviews the optimization targets
exploring the objective functions and the design variables com-
monly used for building design problems. Finally, future perspec-
tives on the use of building design optimization are presented.

2. Optimization algorithms

Generally, an optimization problem can be represented in
mathematical form as:

min
xAX f ðxÞ
where xAX is the vector of the design variables, f : X -ℝ is the
cost or the objective function, and X �ℝn is the constrain set.

When there is more than one objective function for optimization
then a multi-criteria or a multi-objective optimization problem arises.
This is common in building design problems and these functions are
often contradictory. Typically, there are two popular approaches for
multi-objective optimization problems. The first one uses a weighted

sum functionwhere each of the objectives is normalized and summed
up with their associated weight factors to get only one cost function.
Typical optimization algorithms can be used to solve it but the
information on how the different sub-objectives interfere with each
other cannot be extracted. Testing different weight factors causes an
increase in the number of optimization problems, which in turn,
demands longer processing times.

The other popular approach for multi-objective optimization
is proposed by Pareto [1]. A solution is Pareto optimal or non-
dominated when there isn't any other feasible solution that
improves one objective without deteriorating at least another
one. The multi-objective algorithms result in a set of non-
dominated solutions which is called Pareto frontier. When the
problem consists of two objectives, the Pareto frontier can be
represented as a curve. Fig. 1 presents a typical example of Pareto
frontier for a minimization problem with two objectives.

The above mentioned multi-objective approaches have both
advantages and disadvantages. As Cao et al. [2] indicate, the
algorithms that provide Pareto solutions focus on exploiting the
diversity of the solutions, but often present issues of inadequate
efficiency and effectiveness. The weighted sum methods are more
efficient and easier to implement, but require prior knowledge and
they don't provide information on the compromise between the
objectives.

The selection of the optimization algorithm depends on the
problem that needs to be solved. There are some situations where
an analytical solution of the objective function can be obtained,
as Adamski [3] and Marks [4] proposed. They mathematically
describe the shape of a building and solve it with numerical
methods, finding the true optimal. When the solution space is
relatively small and the calculation of the objective function is fast,
the entire space can be searched to find the true optimal. Such
examples are presented by D'Cruz and Radford [5] who used a
simple building model and Pareto optimal Dynamic Programming
to optimize thermal load, daylight, planning efficiency and capital
cost. Jedrzejuk and Marks in [6,7] described the building design
problem mathematically and solved it numerically, by applying the
CAMOS computer system. Castro-Lacouture et al. [8] used a mixed
integer optimization model to select materials that maximize
green building LEED credits. Michalek et al. [9] used CFSQP, a C
implementation of Feasible Sequential Quadratic Programming to
solve their building geometric layout problem. Chakrabarty [10]
used non-linear programming in his proposed HudCAD tool for
optimization of housing and urban development projects. Petersen
and Svendsen [11] presented a simplified economic optimization
method from an early stage near-optimum economic design.
Stavrakakis et al. [12] used sequential quadratic programming

Fig. 1. An example of Pareto frontier.
Source: Prototype.
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