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a b s t r a c t

Ionic liquids (ILs) and deep eutectic solvents (DESs) have been applied in various fields such as
electrolytes for lithium ion batteries, electrodeposition, electropolishing and even in fuel cells. ILs and
molten salts have found some applications in redox flow batteries (RFBs) in the past and recently some
metal ion based ILs have been proposed and used by Sandia National Laboratories. In addition, only two
papers have very recently reported on the application of DESs for the same. This review gives an
overview on DESs and discusses the possibility of employing them in RFBs for renewable energy storage
and utility-scale load leveling applications. Commencing with a discussion on energy storage technol-
ogies and the RFB, this paper goes on to provide an account on ILs and DESs as well as their applications
in electrochemistry and energy conversion. A succinct discussion on the results of Sandia National
Laboratories on using ILs as electrolytes for RFBs is provided building onto the feasibility of replacing ILs
with DESs in the near future (based upon recent publications on the topic).

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Efficient renewable energy storage needs to accumulate energy
during times when demand is low (peak shaving) and to supply it
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when demand is high in order to ensure efficient energy handling
(load leveling) [1]. A number of technologies based on electrical,
chemical, electrochemical and mechanical processes have been
proposed to address the energy storage needs of electrical grids
[1–6]. Electrochemical storage systems are found to be robust due
to their relative ease of siting as well as fast response times [1].

Electrochemical energy storage systems provide direct conver-
sion between chemical and electrical energy and are therefore
particularly suited to the storage of the latter [1]. Electrochemical
storage technologies also offer additional advantages compared
with other types of energy storage systems, including [7]:

� Modularity whereby they can be used in applications ranging
from a few kWh to several MWh.

� Simultaneous application for both power quality and energy
management.

� Low environmental impact, which means they can be sited
near residential areas.

Redox flow batteries (RFBs) are rechargeable electrochemical
systems that rely on the redox states of various soluble species for
the purposes of storing and releasing energy via highly efficient
charge/discharge processes [8–10]. The redox flow cell concept can
be traced back to the zinc/chlorine system that was developed in
1884 by Charles Renard and Arthur Krebs to power their army
airship “La France” (a historical timeline for the development of
RFBs is shown in Fig. 1) [11,12]. The concept was then re-visited by

Posner in the mid-1950s [12] prior to an independent investiga-
tion that was conducted in Japan around 1968 [2,13]. The modern
iron/chromium RFB was invented by Lawrence Thaller at the
National Aeronautics and Space Administration (NASA) in the
USA [13–15]. Since then, the technology has been developed
significantly leading to many small to medium-scale field tests
and demonstrations in the last two decades [16]. As fully soluble
redox couples and inert electrodes are used (Fig. 2) [1,7,9,13,17],
undesirable electrode processes are eliminated (especially struc-
tural changes of the electrode) in comparison to secondary battery
systems [1,18]. The system energy storage capacity is determined
by the concentrations of the reactants and the size of the storage
tanks, while the system power is determined by the number of
individual cells within a battery stack and their electrode area [19].
As a result it is possible to independently optimize the flow cell′s
storage capacity and power output [1]. This feature makes RFBs
unique in their ability to provide the specific power and energy
requirement for each application. Storage capacity can be
increased by adding more electrolytes, so the incremental cost of
each additional energy storage capacity unit is lower than that of
other types of batteries [7]. The cost per kWh of the system
therefore decreases substantially with increasing storage capacity,
making the RFB particularly attractive for applications requiring
storage times in excess of 4–6 h [1].

One of the key factors limiting the widespread commercialization
of RFBs appears to be their low energy density. One means of
overcoming this drawback has been the employment of non-
aqueous electrolyte solvents that can offer a wide potential window
of operation and increase the energy capacity of the system [20–25].
Nonetheless, the organic systems used so far have limited availability
(thereby affecting their cost) and are also not environmentally
friendly [1,22]. Therefore a new class of non-aqueous electrolytes
has been considered for energy storage applications and is popularly
known as ionic liquids (ILs) [26–30]. This also has limitations due to
its high cost and its electrochemistry can be severely affected in the
presence of water [31]. This can be avoided if deep eutectic solvents
(DES) are employed in the place of ILs [32].

The aim of this paper is to stimulate interest within the scientific
community to explore the application of ILs and DESs in various RFB
configurations. Recently, Sandia National Laboratories [4] and Tianjin
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Fig. 1. Timeline for the development of RFBs.
Adapted from Walsh and co-workers [7].
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Fig. 2. Schematic diagram of a redox flow battery reactor.
Reproduced with permission from the Electrochemical Society [1,7,9,13,17].
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