

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Assessing the low-carbon effects of inter-regional energy delivery in China's electricity sector

Qixin Chen a,*, Chongqing Kang a, Hao Ming a, Zeyu Wang a, Qing Xia a, Guoxin Xu b,c

- ^a State Key Lab of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
- ^b National Electric Power Planning and Engineering Institute, Beijing 100120, China
- ^c National Power Planning Research Centre, Beijing 100120, China

ARTICLE INFO

Article history: Received 8 January 2013 Received in revised form 25 November 2013 Accepted 29 December 2013 Available online 7 February 2014

keywords: Low-carbon effects Inter-regional energy delivery Electricity dispatch model Transmission grid Assessing method

ABSTRACT

In China, the electricity sector consumes approximately 50% of the coal and emits 40% of the CO₂ from fossil fuel combustion. The unbalanced spatial distribution between energy resources and demands and the remarkable differences in power-generation capabilities among regions are important factors that impede decarbonization of China's electricity sector. Utilization of the abundant low-carbon energy resources in the central and western regions is restricted by limited local demand. Energy demand in these regions accounts for approximately 26% of the entire nation's demand. By comparison, the regions have more than 45% of the energy resources. However, long-distance energy delivery incurs considerable losses. At present, approximately 80% of inter-regional energy delivery uses primary coal transport and 20% travels by secondary electricity transmission. The Chinese government is planning to build an ambitious inter-regional transmission grid for energy delivery. We demonstrate that this plan would significantly change the current delivery patterns and improve delivery efficiency. Approximately 40% of inter-regional energy delivery would travel by secondary electricity transmission and a 25% improvement in the delivery efficiency of the entire system is expected. Therefore, utilization of low-carbon energy resources would be promoted and overall carbon emission would be reduced. Using a finegrained electricity dispatch model to simulate and optimize the operation of the power system, the carbon emission mitigation potential is quantitatively assessed based on real planning data. The results indicate a significant 10% reduction in CO2 emissions in 2030, amounting to 0.49 Gt. This reduction should be included as an important component for the sector's low-carbon budget. Finally, we assess the potential for further reductions in carbon emissions by making modifications to the planned transmission grid.

© 2014 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction				
2.	China'	China's electricity transmission connections and carbon resource distributions – present and future $\ldots \ldots \ldots \ldots \ldots$			
	2.1.	Regiona	l power grid and transmission connections.	. 673	
	2.2.	Regiona	l distribution and structure of low-carbon power resources	674	
	2.3.	Regiona	l coal supply for power generation	675	
3. Model, method and data				. 675	
	3.1.	Objectiv	e function of the model	. 676	
3.2. Constraints of the model		Constrai	ints of the model	. 676	
		3.2.1.	Power supply-demand balance		
		3.2.2.	Power availability	. 676	
		3.2.3.	Penetration of intermittent power generation	. 677	
		3.2.4.	Limits of transmission availability	. 677	
3.4. Basic data for the scenario settings				679	
4.	Empir	ical analy	rsis	. 680	

^{*} Corresponding author. Tel.: +85 106 279 4361. E-mail address: qxchen@tsinghua.edu.cn (Q, Chen).

	4.1.	Analysis of scenario BAU	680			
	4.2.	Assessment of scenario WTC and comparison	681			
5.	Recon	nmendations and conclusion	681			
	5.1.	Recommendations on further reducing carbon emissions.	681			
	5.2.	Conclusion	682			
Acknowledgments						
Ref	References					

1. Introduction

China is one of the major contributors to the recent emission surge, and the electricity sector is the largest single source of carbon emissions, consuming approximately 50% of China's coal and emitting more than 40% of China's CO₂ from fossil fuel combustion [1,2]. Considering the rapid increase in electricity demand, the scale of overall CO₂ emissions from the electricity sector would still experience a rapid increase in the future despite the installation of large-scale generation capacity based on renewable resources [3–5] and remarkable improvements in technology efficiency [6–9]. Several studies have estimated that the scale of annual incremental emission between 2010 and 2030 would be approximately 1.5–2.0 Gt [3,8,10]. This emission is roughly equivalent to Russia's annual CO₂ emissions in 2010 (the world's fourth largest emitter) [11]. Therefore, the electricity sector would be confronted with great challenges in the low-carbon era.

An important factor impeding the decarbonization of China's electricity sector is the unbalanced spatial distribution between energy resources and demands [12]. For example, the exploitable energy resources in the east region account for only 3% of the resources for the entire country, whereas the proportion of energy demand is up to 25% of the national demand. By contrast, the northwest region and Tibet account for approximately 22% of the total energy resources and only 8% of the total energy demand. Approximately 80% of coal reserves are located in the north and northwest regions [1]. Therefore, at present, long-distance energy delivery in the form of coal transport is necessary to support the energy demands in the east, south, and northeast regions. In 2010, inter-regional transport carried approximately 25% of the national coal consumption for power generation [1,3,13]. This situation incurs considerable energy losses and associated carbon emissions, which are estimated to be 0.17 Gt of CO₂, or 5% of the sector total in China [1].

Fig. 1. Division of regional power grids in China.

Download English Version:

https://daneshyari.com/en/article/8120460

Download Persian Version:

https://daneshyari.com/article/8120460

<u>Daneshyari.com</u>