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A B S T R A C T

Source rock samples can be “contaminated” by expelled oils from nearby mature source rocks or from the
organic-rich laminae within the same source rock units. The “contaminations” on the Rock-Eval samples could
produce a false high S1 peak, a high Production Index (PI), a suppressed Tmax and other anomalies. Identifying
the samples affected by expelled oils, assessing and correcting the impacts are crucial in source rock study for
shale oil/shale gas resource evaluation. This study analyzes the Rock-Eval 6 results of 43 core samples from two
recent shale oil exploration wells of the Eocene Qianjiang Formation, a confined source rock unit embedded with
salt intervals formed in a hypersaline lacustrine setting in central China. The geochemical anomalies of the
affected samples are shown through the available samples in this study. Criteria for identifying the affected
samples are discussed, and impacts on the conventional Rock-Eval parameters and subsequent estimation of
kinetic parameters presented. This study provides insights into Rock-Eval data interpretation, particularly in
source rock evaluation for estimating shale oil resources.

1. Introduction

Organic-rich shales have been traditionally regarded as the source
rock in a conventional petroleum system (Tissot and Welte, 1984), and
some of them are now considered as a self-sourced and self-contained,
economically viable reservoir developed through long range horizontal
drilling coupled with multi-stage hydraulic fracturing. Rock-Eval pyr-
olysis has been widely accepted by the petroleum industry as a useful
tool for easy and cost effective data generation in source rock evalua-
tion and shale oil/gas resource appraisal (Peters, 1986; Jarvie 2012a
and b; Modica and Lapierre, 2012; Chen and Jiang, 2016; Chen et al.
2016a and b).

One common feature of fine-grained source rock reservoirs is the
lamination or lithology alteration in vertical and lateral directions. The
self-sourced and self-contained shale resource play is usually a closed
petroleum system, with the crude oil and natural gas originating from
the organic-rich shale and being stored in both organic and inorganic
matrix pores (including natural fractures) (Loucks et al., 2009; Jarvie,
2012b; Modica and Lapierre, 2012; Chen and Jiang, 2016). In a

confined and poorly drained system, expelled oils from organic-rich
laminae can migrate along the kerogen network, and “contaminate” the
same source rock unit by immersing into interbedded coarser grained
(often silty-sandy) shales, thus leading to oil immersion of indigenous
organic matter in the source rock reservoirs (Bernard et al., 2012;
Jarvie 2012a and b; Loucks and Reed, 2014; Reed et al., 2014; Bernard
and Horsfield, 2014; Chen and Jiang, 2016). The common pyrolysis
experiment procedure was designed for normal source rock analysis.
However, the heavy fraction of petroleum produces a measureable re-
sponse in the 350–450 °C range by volatization in the same region
where kerogen conversion to hydrocarbons occurs by thermal pyrolysis
(Clementz, 1979; Espitalie et al., 1977). This “carry-over” free hydro-
carbon results in a mixture with the S2 response on the low-tempera-
ture side.

“Pure Organic Matter” procedure of the Rock-Eval 6 equipment was
designed to provide information relevant to quantifying a sample's
source potential and thermal maturity status (Behar et al., 2001). When
applied to source rock evaluation, the S2 curve is assigned to the hy-
drocarbon residual potential, and the S2 peak temperature (equivalent,
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Tmax) to the thermal maturity. The presence of large amounts of live oils
in immature and early mature source rock samples may lead to sup-
pressed Tmax values (Peters, 1986; Snowdon, 1995). Co-existence of
indigenous organic matter and migrated hydrocarbons in source rock
reservoirs may also result in false signatures due to mixing of S1 with S2
responses, causing depressed S2 peak temperature and over-stating
remaining potential. This could lead to uncertainties in the estimation
of thermal maturity status and hydrocarbon generation potential. In
addition, inferred source rock generation kinetics may be affected due
to the presence of non-authigenic organic matter. On the other hand,
for liquid-rich shale reservoir evaluation, the “carrying-over” free hy-
drocarbons appearing in low temperature range of S2 under-estimates
the free-hydrocarbons measured by S1, over-estimate generation po-
tential, suppress Tmax, and depress and provide unreliable Hydrogen
Index (HI) value (King, 2015).

Identifying the affected samples and eliminating the impact of the
migrated hydrocarbon on Rock-Eval parameter estimation are essential
for restoring the true hydrocarbon generation potential and present day
maturity status in resource estimation. Efforts by improved laboratory
procedures have been made in removing the impact and restoring the
parameters for the indigenous organic matter in recent years (King
et al., 2015; Romero-Sarmiento et al., 2016). However, identifying the
affected samples and assessing the impacts of the non-authugenic or-
ganic matter on Rock-Eval parameters remain elusive.

The traditional method of Rock-Eval data interpretation relies on
the calculated parameters in a summary table, such as in Table 1. In
fact, a large amount of information remains unused in the raw data of
the analysis results, such as in the pyrograms, which can provide ad-
ditional information on oil intrusions in the samples and is useful for
visualizing and estimating the impacts of oil intrusion on the samples.

The objectives of this study are three fold, a) to discuss methods for
identifying samples potentially mixed with migrated oils; b) to estimate
the impact on Rock-Eval parameters relevant to resource potential
calculations; and c) to estimate whether or not the presence of migrated
oils affects Tmax calculation. In this paper, we present the data, discuss
the problems, and describe methods for identification of affected sam-
ples and assessing the impacts of non-authogenic organic matter (mi-
grated oils) on Rock-Eval parameters through the example of salt bound
organic-rich mudstones in the Eocene Qianjiang Formation in the
Jianghan Basin.

2. Geological background

Core samples used in this study come from the Eocene-Oligocene
Qianjiang Formation in two recently drilled shale oil study wells in the
Qianjiang Depression, Jianghan Basin (Fig. 1), central China. The
Qianjiang Depression is a faulted depression developed during a Cre-
taceous-Eocene orogenic event (Wu et al., 2013). Red clastic sediments

Table 1
Rock-Eval analysis results of core samples of Qianjiang Formation, Jianghan Basin.

Sample ID Well Depth
(m)

S1 (mg/g) S2 (mg/g) PI Tmax (°C) S3 (mg/g) TOC (%) HI MINC (%) OI Marker

1,604,663 A 1746.14 4.02 16.61 0.20 427 0.81 3.36 494 1.69 24 1
1,604,664 A 1747.02 4.29 24.01 0.15 435 0.69 4.40 546 2.49 16 2
1,604,665 A 1749.26 25.02 18.86 0.57 417 0.87 4.93 383 8.23 18 3
1,604,666 A 1714.33 5.13 4.12 0.55 420 0.92 1.84 224 2.28 50 4
1,604,667 A 1710.59 9.93 9.53 0.51 425 1.11 3.50 272 3.04 32 5
1,604,668 A 1708.55 6.48 4.91 0.57 420 0.67 2.52 195 6.72 27 6
1,604,669 A 1707.29 14.34 10.05 0.59 420 1.07 3.72 270 3.97 29 7
1,604,670 A 1705.89 11.07 10.16 0.52 421 0.76 3.62 281 2.93 21 8
1,604,671 A 1704.74 5.97 3.22 0.65 407 0.26 1.43 225 0.25 18 9
1,604,672 A 1649.21 13.09 14.18 0.48 425 0.50 3.98 356 5.45 13 10
1,604,673 A 1646.49 21.11 22.57 0.48 421 0.40 5.74 393 3.37 7 11
1,604,674 A 1645.1 9.21 14.97 0.38 426 0.87 3.57 419 1.14 24 12
1,604,675 A 1633 4.09 28.71 0.12 430 0.91 5.05 569 1.48 18 13
1,604,676 A 1632.3 7.03 32.93 0.18 425 1.08 6.20 531 1.79 17 14
1,604,677 A 1309.31 8.88 60.64 0.13 431 1.26 8.22 738 7.23 15 15
1,604,678 B 1446.17 1.46 16.73 0.08 430 1.23 3.34 501 2.03 37 16
1,604,679 B 1451.59 0.50 2.87 0.15 429 0.77 0.80 359 2.14 96 17
1,604,680 B 1454.46 0.69 9.77 0.07 435 1.01 2.36 414 2.63 43 18
1,604,681 B 1463.49 3.07 27.29 0.10 426 1.24 4.64 588 1.85 27 19
1,604,682 B 1463.81 2.67 22.37 0.11 429 1.15 4.12 543 1.12 28 20
1,604,683 B 1467.79 4.06 27.68 0.13 427 1.20 4.85 571 3.85 25 21
1,604,684 B 1471.11 1.58 14.87 0.10 425 0.83 3.18 468 1.29 26 22
1,604,685 B 1475.65 3.28 40.46 0.07 427 1.13 6.75 599 1.20 17 23
1,604,686 B 1476.47 1.29 15.07 0.08 430 0.75 2.80 538 1.80 27 24
1,604,687 B 1478.1 2.18 19.26 0.10 433 1.23 3.53 546 1.36 35 25
1,604,688 B 1481.93 0.42 3.43 0.11 432 0.68 0.85 404 2.20 80 26
1,604,689 B 1485.66 2.33 11.81 0.16 432 0.49 2.33 507 3.61 21 27
1,604,690 B 1487.46 4.56 21.98 0.17 423 0.88 4.93 446 1.18 18 28
1,604,691 B 1492.24 2.56 13.89 0.16 430 0.21 2.44 569 0.88 9 29
1,604,692 B 1497.4 0.50 3.87 0.11 431 0.86 1.45 267 8.31 59 30
1,604,693 B 1500.26 1.39 20.78 0.06 432 1.25 3.71 560 1.16 34 31
1,604,694 B 1502.57 2.05 16.73 0.11 427 1.13 3.17 528 1.11 36 32
1,604,695 B 1507.08 0.41 3.31 0.11 428 0.76 1.17 283 3.28 65 33
1,604,696 B 1512.29 1.85 8.53 0.18 419 1.14 2.74 311 3.77 42 34
1,604,697 B 1513.23 1.15 8.27 0.12 426 1.17 1.97 420 1.60 59 35
1,604,698 B 1513.61 2.45 12.89 0.16 425 0.95 3.18 405 2.52 30 36
1,604,699 B 1518.82 1.88 6.29 0.23 422 1.18 2.20 286 4.70 54 37
1,604,700 B 1524.7 1.90 12.75 0.13 427 1.38 2.81 454 1.23 49 38
1,604,701 B 1528.72 6.47 13.48 0.32 423 1.04 3.12 432 1.50 33 39
1,604,702 B 1534.16 7.50 25.24 0.23 426 1.04 4.90 515 0.67 21 40
1,604,703 B 1535.23 10.07 32.08 0.24 424 1.11 6.49 494 0.74 17 41
1,604,704 B 1536.21 8.97 26.45 0.25 424 1.06 5.01 528 2.54 21 42
1,604,705 B 1537.21 7.72 17.75 0.30 427 1.50 4.15 428 2.35 36 43
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