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Coal is a chemically complex commodity that often contains most of the natural elements in the periodic table.
Coal constituents are conventionally grouped into four components (proximate analysis): fixed carbon, ash, in-
herent moisture, and volatile matter. These four parts, customarily measured as weight losses and expressed
as percentages, share all properties and statistical challenges of compositional data. Consequently, adequate
modeling should be done in terms of a logratio transformation, a requirement that is commonly overlooked by
modelers. The transformation of choice is the isometric logratio transformation because of its geometrical and
statistical advantages. Themodeling is done through a series of realizations prepared by applying sequential sim-
ulation for the purpose of displaying the parts in maps incorporating uncertainty. The approach makes realistic
assumptions and the results honor the data and basic considerations, such as percentages between 0 and 100,
all four parts adding to 100% at any location in the study area, and a style of spatial fluctuation in the realizations
equal to that of the data. The realizations are used to prepare different results, including probability distributions
across a deposit, E-typemaps displaying average properties, andprobabilitymaps summarizing joint fluctuations
of several parts. Application of these maps to a lignite bed clearly delineates the deposit boundary, reveals a
channel cutting across, and shows that the most favorable coal quality is to the north and deteriorates toward
the southeast.

Published by Elsevier B.V.

1. Introduction

Coal is one of themost heterogeneous substances naturally found on
earth. Coal may contain up to 76 of the 98 naturally occurring chemical
elements, most of them in the form of traces (Schweinfurth, 2009). Car-
bon, which by definition is required to be a dominant element, is the
only onepresent as a native element. Ranking of coal according to purity
varies by country, but a commondesignation, startingwith themost im-
pure form, is a classification into peat, lignite, subbituminous coal, bitu-
minous coal, anthracite and graphite (Kwiecinska and Petersen, 2004;
Schweinfurth, 2009).

Methods for coal chemical analysis also abound. Proximate analysis
is the least detailed but at the same time one comprising all possible
constituents. The four components reported as weight percentages in
a proximate analysis are moisture (water), volatile matter, ash and
fixed carbon. Ideally, the moisture of interest is the in situ moisture
also known as inherentmoisture, a component hard tomeasure exactly
primarily because of the disturbance produced during the drilling used
to cut cores.Moisture is ordinarily determined bydrying pulverized coal
at about 100 °F (38 °C). “As receivedmoisture” is the percentageweight

loss relative to the original weight. Inherent moisture is obtained by
applying empirical corrections to the “as received moisture”. Volatile
matter refers to the additional components liberated after rising the
temperature to about 900 °F (482 °C) in the absence of air. It comprises
primarily hydrocarbons, sulfur and carbon dioxide. Ash is the solid res-
idue left after complete combustion of the coal. Finally, fixed coal is not
directly measured; it is the difference to 100% of the sum of the other
three components (American Association for Testing of Material
(ASTM), 2013). In a following paper intended to be published in this
same journal, we will map the results of ultimate analysis and calorific
value to complete the spatial analysis of coal quality.

Proximate analysis provides the contribution to a total of the four
partial components, hence, the four parts fall in the category of compo-
sitional data (e.g. Bacon-Shone, 2011). In variable space, drill cores have
4 components with all of the parts having a numerical valuemathemat-
ically defining a vector. If, like in our case, the interest is in the geograph-
ical variation of such components, each one of them is a regionalized
variable, which are best modeled using geostatistics (e.g. Caers, 2011;
Chilès and Delfiner, 2012). Both compositional data analysis and
geostatistics have been around for several decades, but their combined
application has been sporadic since first attempted by Pawlowsky
(1984). Among the multiple methods offered by geostatistics, the vast
majority of the applications to compositional data have used cokriging
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and have not been related to proximate analysis: Pawlowsky-Glahn and
Olea (2004) and Tolosana-Delgado et al. (2011) dealt with petroleum
geology; Tolosana-Delgado and van den Boogaart (2013) and Niang
et al. (2014) with soils; Lark et al. (2012) and Park and Jang (2014)
with sedimentology; Boezio et al. (2012); Tolosana-Delgado and van
den Boogaart (2014) with mineral exploration; and, Pawlowsky-
Glahn et al. (2015a) with hydrochemistry.

For our full systemwith 4 components, themain objectives here are:
(a)modeling spatialfluctuations in coal proximate analysis components
across a deposit using the newer formulations of isometric logratio
transformation in compositional data analysis and stochastic simulation
in geostatistics; (b) using the results tomap trends and uncertainty sep-
arately for each component, and (c) combining results of several coal
components in the form of probability maps to delineate favorable
and unfavorable areas across the coal deposit.

2. Methodology

Cutting edge modeling of spatial fluctuations of compositional data
requires borrowing from two bodies of knowledge: geostatistics and
compositional data analysis. We follow the standard practice of prepar-
ing two-dimensional pixel maps, which requires interpolation of values
at regular arrangement of locations, called grids when referring to the
centers (nodes) or tessellationswhen referring to the Voronoi polygons
(cells) defined by the nodes (Aurenhammer, 1991).

If the sample comprises N specimens taken at locations ui and each
specimen comprises the same D parts, the data are designated as
zD(ui)=[z1(ui) z2(ui) … zD(ui)], i=1,2,… ,N.

2.1. Geostatistics

The body of knowledge today associated with geostatistics is an ex-
tension of formulations originallymade to advance the estimation of ore
reserves (Krige, 1951; Matheron, 1963). Geostatistics is presently a
widely accepted toolbox for themodeling of any attribute having spatial
fluctuations. The earlymethodswere different forms of a generalization
of least square regression, in which themain objective was the minimi-
zation of errors in the inference of values at locations, uo, not considered
in the sampling (e.g., Srivastava, 2013). The collective name for those
methods is “kriging”, which produces an estimate, z⁎(uo), as a linear
combination of measurements—certainly not compositional—z(ui), or-
dinarily theM closest ones:

z� uoð Þ ¼
XM
i¼1

λi � z uið Þ; ð1Þ

where the λi 's are weights resulting from solving a system of equations
minimizing the estimation error, which can take different forms de-
pending on assumptions about the mean. The value for the minimum
error variance is also called kriging variance. These weights are a func-
tion of the nature of the trend, distances to the estimation location,
the distances among measurements, and the style of spatial fluctuation
of the attribute. Cokriging is a generalization for the joint estimation of
two ormore spatially correlated attributes. For examples and themath-
ematical formulation of kriging or cokriging, the reader may consult
Olea (2009). Kriging still remains the best method for minimizing esti-
mation errors, but has been progressively abandoned in favor of sto-
chastic simulation because kriging values are conditionally biased.
Although on average a collection of kriged values above and below the
average has a mean error of zero, away from the mean, the estimated
values have a systematic deviation; when the true values are small,
kriging gives estimates that are systematically high and conversely for
high true values. This bias has consequences easy to detect and observe.
For example, maps prepared using kriging for the interpolation of
values away from sampling locations have a smoothing that is more

pronounced for sparse samples. This filtering property of kriging is a
problem, for instance, in applications related to fluid flow because the
smoothing distorts the geometry and extent of flow barriers and flow
paths. Another problem is the alteration of the statistics: sample histo-
grams and sample semivariograms are significantly different from
those of the estimated values (e.g., Olea, 2009). Finally, kriging does
not directly model the distribution for the errors at any given location,
distribution that is necessary to model uncertainty. Kriging is restricted
to providing two moments only: the mean and the variance of the esti-
mation. The form of the distribution is missing. When interested in
modeling uncertainty, kriging requires the analyst to assume a distribu-
tion form that is completely defined with just two moments: the mean
and the variance. The alternative of common choice is the normal distri-
bution, which may or may not be a close approximation depending on
the characteristics of the attribute(s) being modeled. Typically, for ex-
ample, when the data are lognormally distributed, it is not reasonable
to expect that the errors will be normally distributed (Goovaerts, 1997).

These weaknesses prompted the development of alternative
methods, of which stochastic simulation has been the most successful
approach going backmore than 40 years (Journel, 1974). The top objec-
tive of stochastic simulation is the reproduction of the global character-
istics of the fluctuations, such as the semivariogram and the histogram.
The approach can be regarded as an automation of the experience of
passing around to several people posted values on amap and requesting
them to prepare contour maps manually. Typically, the outcome is to
have as many different maps as authors because of individual ideas re-
garding the vast possibilities aboutwhat is going on in between the con-
trol points. Stochastic simulation generates any number of different
maps called “realizations”, all honoring the style of fluctuation sug-
gested by the data. Traditionally, such a style has been summarized in
the form of a semivariogram, a two-point statistics. More recently the
latest trend is to use “training images” instead, increasing the discrepan-
cies between simulation and kriging (Mariethoz and Caers, 2014). The
realizations are said to be “unconditional” when all that is required is
to honor the style of fluctuation and “conditional” when additionally it
is required to honor values and the histogram of some control points.
The down side of stochastic simulation is that, on average, for any real-
ization, the estimation errors are greater than those of kriging. Never-
theless, the E-type map, which is the average of all realizations, is
similar to a kriged map, which takes care of the deficiency. Last but
not least, stochastic simulation elegantly solves the problem of model-
ing uncertainty at any node. In general, at each node, each realization
contributes one possible value for the attribute at that location. The
set of all those values, as many as realizations generated, numerically
model the distribution for all values the true value may take.

From the great variety of simulation methods presently available
(Caers, 2011), we have selected sequential simulation for not having
restrictions in sample size, as well as its ease in honoring data, quick
execution using minimal CPU capacity, and being relatively free of
the danger in other methods of generating artifacts. A basic idea in
geostatistics is that spatial uncertainty can be modeled using random
functions of a dimension as large as the number of cells to consider in
themodel. Sequential simulation takes advantage of a recursive applica-
tion of the Bayes's theorem so that these complex random functions can
be modeled as the product of univariate distributions, one per location
(Goovaerts, 1997; Pyrcz and Deutsch, 2014). The term sequential refers
to the fact that the values at the grid nodesmaking a realization are gen-
erated one after the other. What is not implied in the name is that the
visitation path is different for each realization, which is a fundamental
detail needed to produce multiple unique realizations. An important
feature in the practical implementation is the fact that, as the generation
of a realization progresses, partial results are added to the initial mea-
surements and used as data in further calculations. Another common
feature is that kriging is the inference engine for all forms of sequential
simulation. Hence, while straight use of kriging is being abandoned, it is
alive in sequential simulation in the form of a kriging with feedback.
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