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A B S T R A C T

The determination of the optimal multilateral well configuration for different kinds of reservoirs is extremely
challenging due to the wide varieties of possible well type. In this paper, we propose a novel method to de-
termine the number of laterals, lateral length and lateral spacing in the multilateral well. The objective in the
design is to fully exploit the entire reservoir within a certain period of development time. A geological map is
constructed based on the reservoir properties. The fast marching method is used to calculate the drainage area of
each lateral in the development time. The drainage area of the designed multilateral well configuration can
cover the entire reservoir. The results have been validated by analytical method and specific steps of the method
are presented. The applications in both homogeneous and heterogeneous cases are studied. Longer development
time can lead to less number of laterals, shorter lateral length and larger lateral spacing. The drainage area is
irregular in the heterogeneous case. The algorithm can automatically determine the number of laterals, lateral
length and lateral spacing based on the geological characteristics to exploit the reservoir efficiently. The pro-
posed method is appropriate for the field application due to the short computational time.

1. Introduction

Multilateral well has been applied in the oil and gas industries since
1950s (Elyasi, 2016). It is defined as wells with two or more laterals
drilled from a common mainbore. This technique can increase the re-
servoir exposure, improve oil production and greatly reduce develop-
ment costs. In 1953, the first multilateral well was drilled with 9 lat-
erals (Brister, 1998). Advances in directional drilling and completion
have helped increase the number of laterals substantially in the last
decade (Yang et al., 2015).

Previous research on the multilateral well mainly focuses on the
production analysis. Ulaeto et al. developed a simple semi-analytical
model to predict the productivity of horizontal oil wells (Ulaeto et al.,
2014). Friction, acceleration, fluid-inflow and flow regime transition
effects were considered. Coupling flow from a box-shaped drainage
volume to the wellbore was used. Buhulaigah et al. constructed a model
to predict the oil flow rate for multilateral wells with good accuracy.
Artificial intelligence modeling was employed with surface and re-
servoir parameters obtained from field data (Buhulaigah et al., 2017).
Hassan et al. investigated the effects of parameters (i.e., reservoir
parameters, number of laterals, permeability ratio, lateral lengths and
lateral spacing) on the productivity of the fishbone well. Several
methods, including artificial neural network, adaptive neuro fuzzy

interference system, generalized neural network and radial basis func-
tion network are used to estimate the production (Hassan et al., 2017).
Simonov et al. described a mathematical model of fluid flow to a
multilateral well with arbitrary geometric parameters. The model can
simulate the behavior of a random-geometry well by dividing the entire
length of wellbores into linear intervals and placing linear sources. The
approach can be used to determine fluid production trends for wells
with various completion types (Simonov et al., 2017).

Studies on the design of multilateral well configuration are rela-
tively scarce. Yeten et al. used genetic algorithm, artificial neural net-
work, hill climber and near-well up-scaling techniques for the optimi-
zation of multilateral well configuration. The optimal well
configuration varies with the reservoir model and objective function
(Yeten et al., 2003). Maricic et al. carried out parametric study through
comparison of manually-determined multilateral well configuration,
including single-lateral, dual-lateral, tri-lateral, etc., in the coalbed
methane. The length of the well and spacing between laterals were also
studied (Maricic et al., 2008). Chen et al. studied the impact of per-
meability on the design of two multilateral well patterns of quad-lateral
well and pinnate lateral well in coalbed methane reservoir. Results
showed that the effect of the permeability anisotropy ratio change
during production is significant (Chen et al., 2012). Elyasi et al. as-
sessed and evaluated the degree of multilateral well performance in oil
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recovery in a fractured reservoir. An integrated completion-planning
method was developed to investigate the role of two kinds of multi-
lateral wells (i.e., planar dual-lateral and dual opposite laterals) (Elyasi
et al., 2014). Ayokunle et al. analyzed the effects of number of laterals,
length of horizontal sections of lateral, reservoir thickness and perme-
ability anisotropy using Response Surface Methodology. Results showed
that the productivity is more associated with the horizontal section
length and reservoir thickness (Ayokunle and Hashem, 2016).

As described above, most of the studies in the literature assume a
priori regular shapes (e.g., only two laterals) for the multilateral well,
which may not be maximally optimized for the specific reservoir. In this
paper, we propose a design method which can automatically determine
the multilateral well parameters (i.e., number of laterals, lateral length
and lateral spacing as shown in Fig. 1) for different kinds of reservoirs.
First, the background of the algorithm is provided and the method is
validated through comparison with analytical results. Second, the
specific steps of the method are given and a homogeneous reservoir
example is illustrated. Third, a synthetic heterogeneous example is
presented. Finally, some discussions are made and conclusions are
drawn.

2. Methodology

In this paper, we propose a novel forward model to design the
multilateral well given reservoir parameters. The method is based on
the rapid drainage area computation (Datta-Gupta et al., 2011). The
major objective is avoiding interferences between laterals to maximize
the effect of each lateral and develop the entire oil field.

2.1. Drainage area calculation using the fast marching method

We define the drainage area in this paper based on the radius of
investigation given by Lee (2003). The radius of investigation is defined
as the propagation distance of a “peak” pressure disturbance for an
impulse source.

Here, we obtain the radius of drainage area based on the high fre-
quency asymptotic solution to the pressure diffusion equation.
According the continuity equation and Darcy's law, the transient pres-
sure response from a heterogeneous reservoir can be depicted by Eq.
(1).
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where ϕ is the reservoir porosity and μ represents the fluid viscosity. ct
is the total compressibility. P is the pressure and t is the time. k is the
reservoir permeability. We can obtain Eq. (2) after using Fourier
transform (Kim et al., 2009).

− ∼ = ∇ ∼ + ∇ ⋅∇ ∼ϕ x μc
k x

iω P x ω P x ω k x
k x

P x ω
( )

( )
( ) ( , ) ( , ) ( )

( )
( , )t 2 2

(2)

The asymptotic approach is used to solve the diffusive pressure
equation. The solution is (Xie et al., 2012a)
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where τ x( ) is the phase of a propagating wave (i.e., propagating front).
A x( )k represents the amplitude of the wave and ω is the frequency. To
calculate the propagation of the pressure front, only the zero-th order
expansion is considered as shown in Eq. (4) (Sehibi et al., 2011).
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k
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Substituting Eq. (4) into Eq. (2), we can obtain Eq. (5) by collecting
terms with the highest order of −iω (Xie et al., 2012b).

∇ =α x τ x( ) ( ) 1 (5)

where α x( ) is the diffusivity, given by (Zhang et al., 2013)
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Next, we need to correlate the propagating front τ x( ) with the real
observed time. As described above, the radius of investigation is defined
as the propagation distance of the maximum pressure disturbance
corresponding to an impulse source at any given time. In a 2D medium,
Eq. (7) can be obtained (Kang et al., 2013).
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The pressure response in Eq. (7) is maximized when the time deri-
vative is zero as shown in Eq. (8).
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Thus, we can obtain the relationship between the real observed time
t and propagation front τ x( ) (Sharifi et al., 2014).
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To solve Eq. (5), the fast marching method is adopted because Eq.
(5) is a form of Eikonal equation as shown in Eq. (10). The fast
marching method was first proposed for monotonically advancing
fronts from a start position with various speeds (Sethian and
Vladimirsky, 2000).

∇ =T x V x( ) ( ) 1 (10)

where T x( ) is the arrival time at point x and V x( ) is the propagating
speed from the start position. If we try to solve T x y( , ) in point x y( , ), the
neighbor of x y( , ) has four elements of +x Δx y( , ), −x Δx y( , ),

+x y Δy( , ) and −x y Δy( , ). T x y( , ) can be obtained by (Liu et al., 2017):
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where Δx and Δy are the grid spacing in x and y directions. Finally, the
solutionT x y( , ) of Eq. (13) is +T V1/ x y1 ( , ) (if > >T T T2 1), or +T V1/ x y2 ( , ) (if

> >T T T1 2), or quadratic solution of Eq. (13) (if >T T Tmax( , )1 2 ).
To further illustrate the fast marching algorithm, a simple case of a

5-stencil Cartesian grid is shown in Fig. 2 with the middle point being
the starting point (red square in Fig. 2 (a)). A flowchart of the solution
process is summarized as shown in Fig. 3. All grid points can be divided
into three groups: Far (the points of which arrival times have not been

Fig. 1. Schematic of the multilateral well in the reservoir.
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