Accepted Manuscript

The effect of pressure and hydrocarbon expulsion on hydrocarbon generation during pyrolysis of continental type-III kerogen source rocks

Yuandong Wu, Zhongning Zhang, Lina Sun, Yuanju Li, Dongwei Zhang, Long Su

PII: S0920-4105(18)30556-4

DOI: 10.1016/j.petrol.2018.06.067

Reference: PETROL 5074

- To appear in: Journal of Petroleum Science and Engineering
- Received Date: 23 October 2017

Revised Date: 21 June 2018

Accepted Date: 23 June 2018

Please cite this article as: Wu, Y., Zhang, Z., Sun, L., Li, Y., Zhang, D., Su, L., The effect of pressure and hydrocarbon expulsion on hydrocarbon generation during pyrolysis of continental type-III kerogen source rocks, *Journal of Petroleum Science and Engineering* (2018), doi: 10.1016/j.petrol.2018.06.067.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	The effect of pressure and hydrocarbon expulsion on hydrocarbon generation during
2	pyrolysis of continental type-III kerogen source rocks
3	
4	Yuandong Wu ^{a,b} , Zhongning Zhang ^a *, Lina Sun ^c , Yuanju Li ^{a,d} , Dongwei Zhang ^{a,d} , Long Su ^a
5	
6	^a Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research,
7	Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China
8	^b PowerChina Water Environment Governance, Shenzhen, 518102, China
9 10	430100. China
11	^d University of Chinese Academy of Sciences, Beijing 100049, China
12	
13	ABSTRCT: In order to define the role of water and lithostatic pressure in petroleum formation of
14	continental type-III kerogen source rocks, semi-closed hydrous pyrolysis experiments were
15	conducted with 50 - 1200 bar water pressure and 125 - 2000 bar lithostatic pressure under 480 °C.
16	This investigation is very helpful for the explorations of shale gas and deep petroleum in China.
17	Increasing water pressure from 50 to 325 bar can't affect the yields of gaseous hydrocarbon, oil
18	and bitumen, but increasing of water pressure leads the more oil and less gaseous hydrocarbons
19	generated from continental type-III kerogen in 325 - 1200 bar water pressure range under
20	semi-closed condition. The decreasing yields of gaseous hydrocarbon, dryness of gaseous
21	hydrocarbon and hydrogen primary confirms that increasing water pressure may promotes the
22	primary reaction but decreases the cracking magnitude of oil. The decreasing values of S_2 , HI,
23	H/C in the pyrolysised samples confirm that high water pressure can promote the efficiency of
24	hydrocarbon generation from continental type-III kerogen, while maturation of kerogen
25	correspondingly increases showing by increasing values of VR and Tmax. In 125-625 bar
26	lithosatic pressure range, oil cracking and primary reaction from type-III kerogen may be
27	promoted for the decreasing effect of expelling hydrocarbon. The increasing of hydrogen and
28	gaseous hydrocarbon yields also confirms that cracking of oil is enhanced during this pressure
29	range. The decreasing trends of oil and gaseous hydrocarbons yields indicates that hydrocarbon
30	generation rate was reduced by the high lithosatic pressure in 625 to 2000 bar pressure range. The
31	increasing values of S_2 , HI, H/C, and decreasing values of VR, Tmax of pyrolysised samples
32	confirm the retardation effect of highlithostatic pressure on the efficiency of hydrocarbon
33	generation and maturation. Besides, the results also indicate that expelling hydrocarbons strongly

Download English Version:

https://daneshyari.com/en/article/8124530

Download Persian Version:

https://daneshyari.com/article/8124530

Daneshyari.com