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A B S T R A C T

In viscous fluid-saturated elastic porous media, the spherical dilatational wave displacement equations are de-
veloped on Biot's theory and the spherical shear wave displacement equations are developed based on a modified
wave frame. Analytical forms of the solutions are introduced by considering the wave magnitude dispersion due
to the viscosity of Newtonian fluids. The attenuation of dilatational wave and shear wave are separately studied.
Due to the high attenuation of the shear wave, the superposition characteristic is only considered for dilatational
waves under the multiple energy source models. Many advantages of the multiple sources over the single source
have been theoretically or numerically demonstrated, such as multiple energy sources can produce a larger
relative displacement than single source, the wave direction is controllable and the magnitude of the relative
displacement can be adjusted as required under the multiple source.

1. Introduction

Seismic waves generated from earthquakes and mechanical vibra-
tion could alter oil production by the vibrations propagating into the
reservoir as elastic waves give rise to numerous effects on the fluids
flow in porous rocks. Therefore, the increase of oil production with
vibration stimulation ranged from 10% to 65% (Simkin and Surguchev,
1991; Cook and Sheppard, 1989; Kouznetsov et al., 1998; Baviere,
2007). Though numerous investigations were carried out and a con-
siderably large number of theoretical research results have been re-
ported in attempting to understand the principle of enhanced oil re-
covery (EOR) with vibration and seismic stimulation (Huh, 2006; Igor
and Beresnev, 1994; Pujol, 2003; Roberts et al., 2003; Serdyukov and
Kurlenya, 2007; Steven et al., 2008), a thorough comprehension of the
effects of vibration and seismic excitations on EOR processes is far
beyond being reached. The vibrations propagating into the reservoir as
elastic waves give rise to numerous effects on the fluids flow in porous
rocks. Furthermore, the wave motion needed for generating the ex-
citation desired is not comprehended both at theoretical and practical
levels. This limits the application of the seismic and vibration stimu-
lation technique to be developed for industrial applications.

For understanding the relative motion between the fluid and solid,
Wang et al., (2007, 2009) developed the wave governing equations
based on Biot's theory in terms of the displacements in cylindrical co-
ordinates. The relative motion between the fluid and solid of a porous

medium is investigated by the proposed relative displacement. For both
the models studied with or without fluid viscosity, the wave sources
considered in Wang's works are taken as straight lines which can be
merely expanding in a two dimensional plane and are insufficient to
disclose the spatial wave propagation characteristics in reality. Han and
Dai (2011, 2013) developed the non-viscous displacement equations in
spherical coordinates for considering the wave propagated from point
energy sources, whose dimensions are negligible in comparison with
the wavelength of the waves that the point source assumption is more
acceptable and rational than other types of wave source in practice.
Although Han and Dai (2012) tried to set up the viscous fluid model in
spherical coordinates, the shear wave characteristics were not con-
sidered that the research was incomplete.

In this research, to analytically describe the full wave behavior
excited by multiple point energy sources in a porous medium with
viscous fluid, the dilatational wave displacement function is developed
in spherical coordinates based on Biot's Theory. The wave velocity
depends on the material physical properties such as the saturation of
pore and permeability, the selection of parameters has a strong effect on
the quality of the propagation of both shear and compressional wave
(Bala and Cichy, 2007; Castagna et al., 1985).

In addition, a modified shear wave model based on Sahay’s (2008)
theory is developed for better describing the dynamic behavior of shear
waves in viscous fluid. It has been found out the slow shear wave
vanished rapidly close to the wave source in the unbound porous
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medium and the fast shear wave is with high attenuation, which
reaches the same conclusion as Biot. Therefore, due to the high at-
tenuation of the shear waves, the superposition characteristic under
multiple sources are considered for dilatational waves under the mul-
tiple energy source models. Many advantages of the multiple sources
over the single source have been demonstrated, such as multiple energy
sources can produce a larger relative displacement than single source.
Other advantages of multiple energy sources over a single one are
theoretically demonstrated in wave direction control and magnitude
adjustment. Because of the viscosity involved, the frequency becomes
critical in affecting the wave magnitude under given multiple sources
and this effect has been demonstrated as well.

2. Governing equation for dilatational and shear wave

This section focuses on the development of the dilatational and
shear wave displacement differential equations for an elastic solid
containing a viscous fluid. The dilatational wave equations based on
Biot's theory (Biot 1956a, b; Berryman, 1985; Gurevich, 1999; Wang
et al., 2007, 2009; White, 1975), which allows the further measurement
of the relative displacement between the solid and fluid. The shear
wave equations are following the analysis of a modified stress-strain
relations in a fluid-containing, porous elastic solid proposed by Sahay.

In Biot's theory, the wave equations in the low frequency range are
derived based on the following assumptions: the relative motion of the
fluid in pores is laminar viscous and incompressible; the pore size of the
material is geometrically small in comparison with that of the unit
solid-fluid element; the flow is through a constant circular cross-section
that is substantially longer than its diameter, which requires the wa-
velength of the wave travelling in the porous medium to be much larger
than that of the unit element itself. Under these assumptions, the gov-
erning equations of wave propagation with friction have been shown to
be (Biot, 1956a, b):
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where u and U are the displacement vectors of the solid and fluid, re-
spectively, and e and ε are the volume strains of the same solid and
fluid, respectively. The coefficients ρ11, ρ12 and ρ22 are density coeffi-
cients which take into account the fact that the relative fluid flow
through the pores is not uniform. These parameters can be expressed as

= −ρ ϕ ρ(1 ) s11 =ρ ϕρf22 , and = − −ρ α ϕρ( 1) f12 , where ρs and ρf are
the mass densities of the solid and fluid, respectively, ϕ is the porosity
of the porous medium.
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. A corresponds to the familiar Lame coefficients in the

theory of elasticity, where N represents the shear modulus of the ma-
terial. The coefficient R is a measurement of the pressure on the fluid
required to force a certain volume into the aggregate while the total
volume remains constant. Q describes the coupling between the volume
change of the solid and that of the fluid. The coefficient b is related to
Darcy's coefficient of permeability k by =b μϕ

k

2
. By solving the gov-

erning equations in Equations (1a) and (1b), Biot presented the wave
expressions in the form of volume strain. However, these expressions
cannot be directly used to quantify the displacement field in a three-
dimensional domain. To describe the displacement field, the equations
for the propagating waves need to be revised so that the displacements
of the fluid and solid can be expressed separately and quantified by the
governing equation. By applying the Helmholtz decomposition to the
displacement vectors of the solid and fluid of a porous medium, the
general form of the governing equations can be derived. Specifically,
applying Helmholtz decomposition to the displacement vectors of the
solid and fluid of a porous medium, the displacement vectors of the
solid and fluid can be given by

= ∇ + ∇ ×u φ ψs s (2a)

= ∇ + ∇ ×U φ ψf f (2b)

where φs and φf are scalar potentials of the solid and fluid, whereas ψs
and ψf are vector potentials for the displacements of solid and fluid,
respectively. ψs and ψf also satisfy the following conditions ∇⋅ =ψ 0s and
∇⋅ =ψ 0f .

For dilatational wave, also known as compressional wave or P wave,
the displacement is caused by the scalar potentials without rotation,
which implies that ∇ × ∇ =φ( ) 0s and ∇ × ∇ =φ( ) 0f . For shear wave,
also known as rotational wave or S wave, the displacement is due to
vector potentials, such that ∇⋅ ∇ × =ψ( ) 0s and ∇⋅ ∇ × =ψ( ) 0f .
Substituting equation (2a) and (2b) into equations (1a) and (1b), and
rearranging the terms according to the scalar and vector potentials, two
sets of equations can be obtained corresponding to the scalar and vector
potentials of the fluid and solid.

With the above considerations, the expressions for compressive
wave can be given as follows
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with the definition = +P A N2 . In the equations, the subscript s
represents the displacement of solid; f represents the displacement of
the fluid.

To develop wave equations in the form of displacements for P-wave,
take the gradient operation to equations (3a) and (3b) such that
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Let φ be a general scalar displacement potential and u a displace-
ment for dilatational wave. The displacement vector u, for dilatational
wave, is merely related to the scalar potential. Hence, the displacement
equation for dilatational wave can be given in general Laplacian op-
erator form as the following
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Under Biot's equations, for shear wave, the governing equations can
be developed as
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the magnitude of rotation denoted as v which is only related to the
vector potential as = ∇ ×v ψ. To develop the displacement equations
for shear wave, take the curl operation to the former equations (4a) and
(4b) for shear wave such that
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The displacement equation for shear wave can then be given by
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