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A B S T R A C T

We evaluate the application of eight different global search algorithms to the optimization of oil production from
a mature field. Our focus is on algorithms that treat the reservoir simulator as a black box, which is the case for
most commercial hydrocarbon reservoir simulators. The selected optimization algorithms have been divided in
two categories. The first category consists of those algorithm that use approximated gradients, namely, simul-
taneous perturbation stochastic approximation (SPSA) and ensemble base optimization (En-Opt) methods. The
second group includes derivative-free algorithms including particle swarm optimization (PSO), pattern search
(PS), guided pattern search (GPS), covariance matrix adaptation evolutionary strategy (CMAES), differential
evolution (DE) and self-adaptive differential evolution (SADE). GPS algorithm has been recently introduced and
applied in oil production optimization by the authors (Foroud and Seifi, 2016) while the other algorithms have
been developed and coded in MATLAB software according to the most renowned studies in the literature.

The selected algorithms have been applied to optimization of oil production in Brugge field. This problem is a
bounded NPV optimization with 640 decision variables consist of injection and production rates over 10 years of
operation and 200 linear inequality constraints. The results here show that algorithms that use approximated
gradients (SPSA and En-Opt) and take advantage of physical properties of the underlying problem (GPS) are
superior. Algorithms with self adaptation ability such as SADE and CMAES are the second best performers on this
application. In fact, SADE which is the self adapted version of DE could achieve 7.5% more NPV than ordinary DE
algorithm. Finally, in this study, GPS has been overall the most efficient algorithm with lowest number of function
evaluations and the second highest NPV compared to other algorithms.

1. Introduction

Oil and gas resources have been provided the majority of required
energy in last decades, and it is expected that they will retain their
contribution to global energy for decades to come. On the other hand,
many giant hydrocarbon fields around the world are mature with gradual
production decline. Moreover, the number of new field discoveries is
decreasing every year. As a result, a significant effort to optimize oil and
gas production from existing resources seems to be crucial.

Hydrocarbon production optimization has been achieved an
increasing attention during last decade due to its considerable costs and
benefits. Production optimization in the field of reservoir engineering
aims to find the optimal set of well controls in order to maximize or
minimize an objective function such as net present value (NPV), accu-
mulative oil or water production. The computation of the objective

function requires predicting the reservoir dynamic behaviour under
different decision variables (well controls). Since the relationship be-
tween the reservoir dynamics and the decision variables is in general
nonlinear, finding the optimal set of well controls is a very challenging
task. The objective function is usually computed using a numerical
reservoir simulator which may contain several thousands to several
hundreds of thousands grid blocks. Therefore, a commercial reservoir
simulator is often required to predict the future performance of a reser-
voir which is computationally demanding for real reservoir models. As a
result, hydrocarbon production optimization can be considered as a black
box, simulation based optimization problem with expensive function
evaluations.

This production optimization problem can be solved by applying
various gradient based optimization methods. The required gradient of
the objective function with respect to the controls can be computed using
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numerical finite-differences (Aitokhuehi, 2004; Litvaket al, 2002; Wang
et al., 2002; Yeten et al., 2002). This method demands a high number of
function evaluations to obtain the gradient information. In addition, as it
has been shown by (Asadollahi et al., 2014), the finite difference
approximation of the gradients might be inappropriate and noisy. An
efficient alternative is adjoint-based technique that greatly reduces the
computational effort (Brouwer and Jansen, 2004; Jansenet al, 2009;
Ramirez, 1987; Sarma, 2006; Sarma et al., 2008). However,

adjoint-based techniques require full access to the simulator source code
which is not possible in case of industrial reservoir simulators. Finally, it
is important to note that gradient-based production optimization tech-
niques, though computationally efficient, converge to local rather than
global optima.

Application of derivative free optimization algorithms usually de-
mands more function evaluations than gradient based methods. As a
result, several researches have been done in order to reduce computa-
tional cost of such optimization problems using proxy models and reduce
order modelling (ROM) (Cardoso et al., 2009; Cardoso, 2009; Chen,
2012). Authors have studied application of ROM in oil production opti-
mization with and without considering uncertainty (Foroud and Seifi,
2016; Foroud et al., 2016). These studies have been done focusing on
pattern search methods which have been led to introducing a guided
search algorithm named Guided Pattern Search (GPS). GPS has been
proved its applicability in oil production optimization of Brugge field in
combination with ROM and geological uncertainties (Foroud et al.,
2016). In this paper, we aim to compare the newly developed GPS al-
gorithm with some distinguished optimization algorithms to more eval-
uate its efficiency in oil production optimization problem.

The aim of this study is to implement and assess several optimization
algorithms, with emphasis on methods that do not require direct
computation of gradient information. The algorithms studied herein can
be classified in two different categories. First category includes methods
like Ensemble base Optimization (En-Opt) and Simultaneous Perturba-
tion Stochastic Approximation (SPSA) which use gradient approxima-
tions in their optimization process. The second division is derivative-free
optimization algorithms that contain direct search methods (e.g. Pattern
Search methods), a recently developed Guided search method (Guided

Fig. 1. Reservoir structure and well locations in Brugge field.

Table 1
The well Completions of Brugge field.

Well\Formation Schelde
Layers 1-2

Maas
Layers 3-5

Waal
Layers 6-8

Schie
Layer 9

Injectors Open Open Open Open
Producers: 1–4, 6–8,
11–13 & 16–20

Open Open Open Closed

Producers: 5, 10, 14 &
15

Open Open Closed Closed

Producer 9 Open Closed Closed Closed

Table 2
Economic parameters to calculate NPV for Brugge field.

Parameter Value

Oil Price ($/bbl) 80
Water Operation Cost ($/bbl) 5
Water Injection Cost ($/bbl) 5
Discount Rate (percent per year) 10

Table 3
Final Optimization outputs.

Order No. Algorithm Repetition Opt. NPV Function Evaluations Initial point improvement (%) Stopping Criterion

1 SPSA 3 3.659eþ09 70002 27 Max. iteration
2 GPS 2 3.639eþ09 11254 24 Mesh size
3 En-Opt 2 3.603eþ09 22429 34 NPV Tolerance
4 CMAES 8 3.512eþ09 28612 20 NPV Tolerance
5 SADE 2 3.403eþ09 50100 35 Max. iteration
6 PS 4 3.190eþ09 92774 9 Min. Mesh size
7 DE 2 3.165eþ09 50100 26 Max iteration
8 PSO 6 3.128eþ09 40000 12 Max. iteration
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