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A B S T R A C T

A lumped element model is implemented to describe the torsional vibrations of the drillstring while reaming, i.e.
rotating off-bottom. The rotary motions and the torques anywhere in the drillstring are simply convolutions of the
surface rotary motion with analytical expressions that are derived in this paper. The Coulomb friction forces are
divided into steady-state forces and time-dependent forces. The drillstring vibrates around a stable position that is
determined by the steady-state friction torques. The vibrations are damped by viscous friction forces and in
particular the Basset forces dominate the damping. The time-dependent part of the Coulomb friction forces are
related to when something is not normal in the well. For instance, when the drill bit is hindered by a cuttings bed
or the bottom part of the drillstring is hung up in a sharp curvature.

The model is further used in an algorithm for detecting the time-dependent Coulomb friction coefficients. A
sensitivity study is added and the detection algorithm seems to be mathematically robust. This motivates
experimental verifications of both the model and the detection algorithm in the future.

1. Introduction

When drilling and reaming deviated oil-wells, the drillstring is sub-
jected to friction forces as it is scraping along the borehole wall. Moni-
toring these friction forces is a vital part of a normal drilling operation.
After drilling each stand, which are typically 30m, up-weights and down-
weights are typically measured. The up-weight is the weight of the drill-
string when pulling out with constant speed. The down-weight is the
weight of the drillstring when running into the hole again with constant
speed. The difference between the up-weight and the down-weight is an
estimate of two times the sum of the friction forces in the wellbore.
Typically, these graphs are plotted as functions of depth to give an
overview of the friction in the well.

Another test that is frequently used is the measure of the off-bottom
torque. The off-bottom torque is the torque of a rotating drillstring that is
off-bottom and not moving axially. When this is done for each stand, a
curve of torque as a function of depth is defined. In practice, these plots
are used to diagnose the state of the well. The plots can reveal whether
the hole is properly clean, in gauge or if there are any sharp curvatures.

Furthermore, when running drillpipe in or out of the hole, sharp
changes in drillpipe weight can be encountered. The depths of such
events are carefully noted and this information is used for diagnozing the
operation. The drill bit and the stabilizers have reamers that enables the
operator to remove these restrictions. However, excessive reaming in-
creases the hole diameter locally, which can cause other problems such as

vibrations, poor hole cleaning and difficulties with running casings into
the hole.

The algorithm that is outlined in this paper can potentially be used to
diagnose how much reaming is sufficient to clean a restriction without
damaging the hole excessively. Moreover, since the detection algorithm
can be enabled at all times, it can determine when the increased friction
happens.

In addition to outlining the detection algorithm, the semi-analytical
models in this paper provides a physical understanding of the impact
of the influential friction forces in the well. The models are similar to the
semi-analytical lumped element models that are described in Hovda
(2018a,b), which are shown to generalize the models in Hovda (2017),
Bavinck et al. (1994), Bavinck and Dieterman (1996) and Dieterman
et al. (1995). The models coincide precisely when the viscosity is set to
zero, the drillstring has a uniform diameter and the added mass effect is
omitted.

In Hovda (2018a), the axial vibrations in a vertical drillstring is
described, when rotation can be either on or off. Here, it is concluded that
the viscous Basset forces dominate the damping term and that the effect
of the added mass has a major effect on the pressure downhole.

In Hovda (2018b), the axial vibrations in a rotating drillstring in a
deviated wellbore is described. It is proven that the Coulomb friction
forces dominate the damping term and it is suggested that the Basset
forces can be neglected. The axial motion is typically overdamped, unless
the hole is only slightly deviated and/or the rotation speed is very high. A
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model that describes when the hole is deviated and the no rotation is
present is given in Zhao et al. (2016). Here, it is reported that the axial
stick-slip effect can cause large surge and swab pressures downhole.

It is suggested in Hovda (2018b) and furthermore argued for in this
paper, that the axial and the torsional motions are decoupled when the
rotation is on and the drill bit is off-bottom. However, in the case of
drilling, these forces are severely coupled as outlined in for instance
(Arvani et al., 2015). Modeling drilling is outside the scope of this paper,
but such a model could potentially be benchmarked against the
semi-analytical model that is presented in this paper.

It is also important to note that the modern technological evolution is
moving in the direction of automation. Fully automatic drill floors are
already in place and high resolution data transmission from downhole
(Hall and Fox, 2002) exist together with “along string measurements”
(Reeves et al., 2011). This means that simple models that can be com-
bined with real-time measurements are particularly needed for creating
suitable control systems.

The general model is outlined in Section 2 and the model for torsional
vibrations while reaming is given in Section 3. The detection algorithm is
included in Section 3. Calculations on a J-well is given in Section 4,
where a sensitivity study of the detection algorithm is included. A dis-
cussion is added in Section 5, while the paper is concluded in Section 6. A
nomenclature is added at the end of the paper.

2. Dynamic model for the drillstring in a deviated wellbore

We consider a drillstring that is modeled as a set of n blocks that are
connected by n spring elements, see Fig. 1. A three-dimensional coordi-
nate system is introduced. The first block is hanging from the first spring
which is attached to a point that is called the “block position”. This point
has the coordinates f0; 0; 0g. The coordinates of the blocks are denoted
Xs;i and the wellbore geometry is defined by a set of n normalized tangent
vectors, such that v1 ¼ f0;0;�1g and vi ¼ ðXs;i � Xs;i�1Þ=h for 2 � i � n,
where h ¼ ��Xs;i � Xs;i�1

��.
The springs are fixed to the blocks, meaning that the springs can take

up angular momentum. The drillstring can be rotated clockwise and the
rotation angle at the block position is ΘðtÞ, where the initial condition
Θð0Þ ¼ 0 is always assumed. Each block is rotated clockwise by an angle
θiðtÞ around vi and the physical state of the drillstring uniquely defined
by the generalized coordinates θiðtÞ.

By combing Newton's second law with Hooke's law we obtain

0 ¼ I1€θ1 þ κ1ðθ1 � ΘÞ � κ2ðθ2 � θ1Þ � S1
0 ¼ Ii€θi þ κiðθi � θi�1Þ � κiþ1ðθiþ1 � θiÞ � Si 2 � i � n� 1
0 ¼ In€θn þ κnðθn � θn�1Þ � Sn;

(1)

where for block i, Ii is the moment of inertia, κi is the spring above the
block and Si is the external torque.

2.1. Friction forces from the fluid

Wemodel the viscous friction forces on the drillstring as a sum of two
groups of forces. These are the steady-state friction forces and the Basset
forces, which are the forces that are dependent on the time history. When
the rotation speed is constant, we assume a Newtonian laminar flow and
the velocity profile is

uiðrÞ ¼ C1r þ C2

r
;

where C1 and C2 are constants that are determined by the boundary
conditions uiðRÞ ¼ 0 and uiðαiRÞ ¼ αiR _θi (Stokes, 1845). Here, αi is the
radius of the drillstring at element i, divided by the hole radius R. We
easily see that C1 ¼ �α2i θi=ð1� α2i Þ and C2 ¼ � C1R2. The shear stress
on the wall is given by μ∂ui=∂r at αiR, where μ is the fluid viscosity. We
therefore conclude that the steady-state friction torque Sss;i is

Sss;i ¼ 2πα2
i R

2hμ
∂ui
∂r

����
αiR

¼ �css;i _θi where css;i ¼ 2πR2hμ
α4
i þ α2

i

1� α2
i

:

The Basset forces are related to the fact that the steady-state velocity
profile is not developed when the rotation is accelerated. In order to
model these forces, we exploit a result that is given in Langlois and
Deville (2014). In the case of an infinite container of fluid, which has an
infinite horizontal plate that suddenly moves with a speed U, the velocity
profile in the fluid is

uðtÞ ¼ U
�
1� erf

�
y
ffiffiffi
μ

p
2
ffiffiffiffiffiffiffi
ρmt

p
��

;

where y is the vertical direction. Moreover, in the situation of time-
dependent U, it is shown in Langlois and Deville (2014) that the accu-
mulated effect on the shear stress isffiffiffiffiffiffiffiffi
ρmμ
π

r �
t�

1
2*t

∂U
∂t

�
;

where �t denotes the convolution with respect to time. We let U ¼ αiR _θi
and we suggest that the Basset torque Sba;i on the drillstring is

Sba;i ¼ 2α3
i R

3h
ffiffiffiffiffiffiffiffiffiffiffi
πρmμ

p �
t�

1
2�t€θi

�
¼ bi

�
t�

1
2�t€θi

�
: (2)

Paper (Hovda, 2018a) explains the dynamics on the axial motion in
the drillstring when these forces are action on it. Different from that
paper we will also add Coulomb friction forces Ri;co.

2.2. Coulomb friction forces

Coulomb friction states that the friction force between two sliding
surfaces is proportional to the normal force with a direction that opposes
the motion. Similar to Hovda (2018b), we assume that the normal forces
are dominated by the tension forces due to the drillstring weight. We
neglect the effect that axial vibrations have on the normal forces.

It is essential in the Coulomb friction model to determine the absolute
values of the normal forces that are acting on the blocks. To establish
these normal forces, we define n normal vectors ni, which are basically
the derivative of the tangent vectors with respect to the length of the arc.
They are defined as

ni ¼

8>>>>>><>>>>>>:

f1; 0; 0g for i ¼ 1 or vi ¼ viþ1 ¼ f0; 0;�1g

vi � ðvi � f0; 0;�1gÞ for i � 2 and vi ¼ viþ1 6¼ f0; 0;�1g
viþ1 � vi
jviþ1 � vij for i � 2 and vi 6¼ viþ1:Fig. 1. Schematic view of the model of the drillstring. The drillstring is

considered as a set of n blocks with masses and moment of inertias denoted by
mi and Ii, respectively. These blocks are connected to n springs with spring
constants that are denoted with κi.
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