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ARTICLE INFO ABSTRACT

Application of model-based estimation techniques to kick detection come with constraints imposed on the
structure of the mathematical model by stochastic estimation algorithms as well as the limited number of flow-
line measurements typically available in most drilling operations. This, along with high computational cost of
numerical models call for low to medium order deterministic models that still capture the dominant effects of
fluid flow during drilling. A built-for-purpose single phase deterministic model for conventional drilling is pre-
sented. The model development is the first step in a two-step process of real-time early kick detection using
stochastic estimation techniques. The model is developed using lumped parameter modeling afforded by bond
graph modeling technique. Aside a hydraulic model for the wellbore, well-formation interactions that give rise to
kicks, lost circulation, and wellbore breathing are also modeled and coupled. This holistic modeling approach
provides a compact set of low order equations which makes stochastic estimation feasible, and well monitoring
easier so that, for example, wellbore breathing is not mistaken for kicks, leading to unnecessary non-productive
time and possibly inducing kicks due to needless well control actions undertaken. Lumped well parameters are
calibrated with an optimization tool, and the model is validated using historical data from a conventionally
drilled, onshore well.
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1. Introduction (Maybeck, 1979):

The field of well flow and kick modeling has been dominated by 1. Mathematical models are approximations depicting only the domi-
numerical models based on mass, momentum, and energy conservation nant effects of a process. Hence no such model is perfect and sources
laws in distributed parameter forms. These complex, high fidelity models of uncertainty exist.
feature multi-phase unsteady flow equations and an elaborate descrip- 2. Disturbances are present in all systems and these can neither be
tion of flow regimes. They provide the capability to track kick gas modeled deterministically nor controlled.
migration from bottomhole to surface and are deployed as commercial 3. Sensors used to measure system response are themselves imprecise.
simulators for flow assurance, well planning, and after-the-fact analysis They introduce their own dynamics and distortions to readings, and
of well control issues (Bendiksen et al., 1991; Danielson et al., 2011). data is often corrupted by noise. Also, in some cases, sensors cannot

More practical multiphase flow models for drilling applications are be devised to measure quantities of interest.
also derived from first principles, although the energy equation may be

discarded due to slow temperature dynamics. Simplified closure re- These limitations inform the use of well sensor data to continuously

lationships for density, friction pressure loss, influx rate, and gas disso-
lution rate, among others, are used (Rommetveit and Blyberg, 1989;
Starrett et al., 1990). In their deployment as well monitoring tools, model
results are compared with well sensor data and discrepancies are marked
as an indication of anomalies like kicks (Rommetveit et al., 2004).
Though they are sourced from fundamental conservation laws, these
models still share the same limitations that all deterministic models have
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update model parameters using optimization routines. Where model-
based estimation techniques are used in conjunction with these
models, they are applied for reservoir characterization using Ensemble
Kalman filters (EnKF) (Vefring et al., 2003), or tuning of flow model and
pressure loss parameters using unscented Kalman filters (UKF) (Iversen
et al., 2006). However, there is usually insufficient topside and downhole
sensor data to adequately calibrate all distributed model parameters
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along the wellbore, hence overall accuracy of models is still impacted
(Kaasa et al., 2011).

Stochastic estimation operates to minimize the limitations of deter-
ministic models. They go beyond comparing deterministic model pre-
dictions with sensor data. Well observations are assimilated into model
predictions in order to update observed state variables and provide es-
timates for unobserved state variables, all while minimizing error. Model
and measurement uncertainties are also accounted for in the process.

To apply stochastic estimation in dynamic kick prediction, well state
variables have to be predicted at each time step prior to inferring pos-
terior estimates from observations. The use of distributed parameter
models to describe well behavior mean that PDEs first have to be dis-
cretized, yielding high dimensional discrete systems which are expensive
to compute. This highlights two limitations of using PDE models for
model-based estimation. Firstly, the order of available measurements
have to match the order of the predictive model in order for the system to
be observable and controllable (Anderson and Moore, 1989). High order
distributed models mean that sensors have to be installed along the entire
flow line. This is an expensive undertaking and very few wells use the
technology. Hence the application has had to rely on a less constraining
criteria of detectability for implementation where only a small number of
observable states are estimated (Nikoofard et al., 2015). Secondly, where
Sequential Monte Carlo techniques are to be used for estimation, the
computation cost in addition to numerical model prediction could be
prohibitive and impractical especially for real-time applications like kick
detection during drilling. Hence simpler, ODE models are desirable
where the application indicates that multiphase flow dynamics can be
ignored without excessive loss of accuracy.

Kaasa et al. (2011) developed a low order, single phase model for
managed pressure drilling (MPD) applications. The model has also found
use in surge and swab estimation and control during tripping (Gjerstad
et al.,, 2013). In Ojinnaka et al. (2016), a single-phase drilling model
suitable for model-based estimation was described. The model was
coupled with the linear Kalman filter to predict kicks. The use of Kalman
filter for state estimation means that nonlinearities in well flow and
well-reservoir interaction models have to be linearized. A drawback of
doing this is that first order truncation of the series expansion leads to
some loss of system information as the prior probability density function
and likelihood functions are propagated in time (Maybeck, 1979). Ac-
curacy of estimates is thus impacted. A linear system also means that
applicability is limited to drilling ahead activity only, when the pumps
are on and inflow rate is steady.

The focal point of the present paper is to apply bond graph technique
to develop a full course, low order deterministic model for conventional
drilling suitable for application in real time kick detection using
nonlinear stochastic estimation techniques. The model accounts for
pumps-on drilling ahead and pumps-off stationary well situations, as well
as wellbore breathing and mild lost circulation. As a deviation from other
kick models, a submodel for the pore pressure is coupled. Real-time
pressure difference between reservoir and openhole drives influx into
the wellbore. Hence, rather than use predetermined pore pressure esti-
mates which are uncertain and become inaccurate if drilling ahead en-
counters unpredicted overpressured zones, a pore pressure model
outputs estimates at each time step during stochastic estimation. Subse-
quently, influx rate or lost circulation can be calculated using established
pore pressure-wellbore pressure relationship models.

2. Lumped-parameter modeling using bond graphs

A bond graph is a tool used to depict physical systems graphically,
from which dynamic equations can be extracted. Subsystem are repre-
sented as equal power bonds each one carrying a power conjugate (effort
and flow) that portray instantaneous energy storage and flows in dy-
namic systems. The use of power bonds mean all system types can be
modeled, be they hydraulic (pressure x flowrate), mechanical (force x
velocity), electrical (current x voltage), thermal or chemical systems.
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Energy transfer between subsystems occur at junction elements which
are modeled such that mass and momentum are conserved, and dynamic
equations are easy to extract. A set of bond graph elements are used to
account for energy sources and sinks, energy storage, dissipation, and
flow:

1. Source elements: both externally-defined efforts (Sg) and flows (Sp),
e.g. mud pump.

2. Capacitive “C” elements: capable of storing potential energy, e.g.
volumes that store compressible fluids such as mud pit, drillstring,
and annulus.

3. Inertial “I” elements: capable of storing kinetic energy, e.g. fluid
inertia.

4. Resistive “R” elements: capable of dissipating energy, e.g. pressure
loss during fluid flow

5. Transformers and gyrators: idealized power coupling elements which
do not themselves create, store nor dissipate energy but losslessly
transfer energy from one physical domain to another, e.g. from hy-
draulic to mechanical energy.

6. Junction elements: used to represent constraints for energy transfer
among subsystems, such as conservation of mass or momentum in
equal effort (0-junction) and equal flow (1-junction) scenarios.

Constitutive relationships between system parameters and variables
lead to lumped parameters for inertia, capacitance, and resistance which
direct and meter energy flow between system components. Lumped
parameter modeling provides a means of transforming spatially distrib-
uted, infinite dimension systems into discrete time, finite dimension
representations. Using bond graphs, distributed parameter systems like
flow in long hydraulic lines are represented as transmission lines where
the flow line is divided into any convenient number of finite lumps with
each lump exhibiting compliance, inertia, and dissipation characteristics
in order to model the dominant effects of fluid flow. The finite lumps are
similar to discretization in partial differential equations. Aside from
simplicity and inherent stability of the model equations, lumped
parameter modeling means that flow systems can be calibrated more
accurately even with limited measurement signals from a well. Karnopp
et al. (2012) provides an extended description of bond graph modeling.

2.1. Model structure

The model is specifically built for well monitoring and early kick
detection using stochastic estimation techniques. Since system observ-
ability is a constraint in model-based estimation, the small number of
flow-related measurements available in most drilling operations dictate a
low order system except where wired drillpipe telemetry data is
available.

Hence, the wellbore is divided into three sections: one drillstring and
two annulus sections consisting of a cased hole and an openhole. As with
all flow models, pressure and flow rate changes with time are important
variables to track. For the two annulus sections, pressure momentum
defines the well state and outflow rate at the top of the annulus accounts
for any mass transfer into or out of the wellbore from its interaction with
the reservoir. Fluid compressibility is captured in a change in volume
relationship with well pressure. Given the assumed unavailability of flow
line data, and in order to more accurately estimate the pore pressure
through its relationship with the pump pressure, mud compressibility in
the drillstring is not modeled and the flow source results in a derivative
causality for the change in pressure momentum in the drillstring, I,
which is subsequently ignored.

A Cartesian reference frame is fixed at the rotary kelly bushing (RKB)
from which the drill bit and true vertical depth (TVD) of the bottomhole
is tracked as drilling progresses in the axial direction. Any kick or lost
circulation is assumed to occur at the bottomhole. This is where an
influx/lost circulation model is coupled to the wellbore model. A
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