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A B S T R A C T

The heterogeneity in complex porous media like oil reservoirs and aquifers many times renders a fraction of fluid
in the pores immobile. The tracer breakthrough curves that are used to characterize the porous media are
impacted by the immobile volume fraction and show a tailing effect. It is important to first recognize the presence
of the immobile volume and quantify it based on a single tracer breakthrough curve in complex geological en-
vironments. In this work, we use the method of moments on the tracer breakthrough curve to solve the inverse
problem of porous media characterization with stagnant volume fractions. In particular, we use a three parameter
model describing the tracer transport in a porous medium with an immobile fluid fraction and solve the forward
problem analytically. We derive mean, variance, skewness, and kurtosis of the analytical solution for the exit age
density of the injected tracer in the porous medium. We then describe the behavior of the moments in the
parameter space of the transport model and relate it with the tracer transport behavior in the porous medium. We
then develop the solution for the inverse problem of using these higher order temporal moments of the effluent
tracer concentration to estimate the immobile fluid volume in the porous medium.

1. Introduction

Tracer transport in porous media is important for many applications
e.g., characterization of oil reservoirs for enhanced oil recovery (Lake
and Hirasaki, 1981; L�opez et al., 2003; Dindoruk and Dindoruk, 2008;
Sharma et al., 2014; Al-Shalabi et al., 2017) and contaminant transport in
aquifers (Rubin et al., 1997; Berkowitz and Scher, 1998; Elenius and
Gasda, 2013; Kang et al., 2015; Seetha et al., 2015). The fluid generally
has to travel complex pathways in these porous media, which cannot be
accessed for visual evaluation. Therefore, tracer tests are widely used for
characterization and evaluation of the porous media for flow behavior
(Scholz et al., 2012), which can provide useful information about the
porous media, such as, heterogeneity of oil and gas reservoirs and re-
sidual oil saturation. Interpretation of the tracer test is dependent on the
mass transport model applied on the tracer particles. For example, in an
oil reservoir, the residual oil saturation is found using the difference in
mean arrival times of the two tracers injected in the reservoir during
water injection (Cooke, 1971; Silva et al., 2017). One of the tracers is
soluble only in water and the other is soluble in both, oil and water. The
tracers undergo different processes in the reservoir, i.e. water soluble
tracer advects and disperses in the water phase in the reservoir, while the

oil soluble tracer advects, disperses and solubilizes-desolubilises in the
residual oil. The mean arrival time is dependent on the processes the
tracers experience during their time in the reservoir, which is then used
to determine the remaining oil or residual oil saturation. Tracers may
encounter stagnant sections, called dead-end or immobile zones, in the
porous media during the flow. The flow is extremely small or zero in
these stagnant zones (Coats and Smith, 1964; Baker, 1977; Kandhai et al.,
2002). Once a tracer particle or a contaminant moving with the fluid
enters this stagnant region, it can escape only through diffusion. This
phenomenon is known to increase the residence time of the particles
visiting the dead-end or immobile sites in the porous media in compar-
ison to rest of the tracer particles. Fraction of the immobile volume and
interaction of the tracer with the immobile volume is known to impact
the mean arrival time differently at different fluid flow rates, leading to a
tailing effect.

For the tracer transport in a porous medium with stagnant or
immobile volume, Deans (1963) first described a capacitance model
using three parameters. These parameters are (i) ratio of axial convection
and axial dispersion called the Bodenstein number which is a specific
type of Peclet number (Pe) (Froment et al., 2011), (ii) mobile volume
fraction of the total void volume in the porous medium (f), and (iii) ratio
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of the mass transfer between mobile and immobile regions and convec-
tion in the mobile region (α). Coats and Smith (1964) validated this
model experimentally. Jasti et al. (1987) pointed out that at low α, the
dimensionless peak arrival time of the tracer at the exit is less than unity
while at high α the peak arrival time is always unity. They described that
at high injection rate (low α) the tracer will not get time to interact with
the stagnant volume so will arrive early and at a slow flow rate (high α)
the tracer will diffuse into the stagnant volume slowing the peak arrival
times. The theory has been extensively used for estimating immobile
volume fraction and characterizing the oil and gas reservoirs using tracer
test with long tails (Baker, 1977; Salter and Mohanty, 1982; Gist et al.,
1990; Wirner et al., 2014; Sanchez-Le�on et al., 2016).

The parameter determination using the Coats and Smith model is
difficult owing to the three fitting parameters (Coats and Smith, 1964;
Jasti et al., 1987). The mean arrival time and variance of the residence
time density, i.e. second order temporal central moment, which are
generally used for parameter estimation from experimental data give
non-unique solution for Pe, f and α. Approach of matching the experi-
mental exit concentration vs. time with a numerical model while
searching the Pe, f and α is computationally expensive. The higher-order,
non-Gaussian moments of the residence time distribution are rarely
addressed for characterizing the flow behavior and the porous medium.
Ginzburg (2017) addressed the higher order moments for the conven-
tional advection-dispersion model.

In this work, we explore the use of non-Gaussian moments of the exit
age density of the tracer i.e. skewness (Sk) and excess kurtosis (Ku), for
parameter estimation of the three parameter model of tracer transport in
a porous medium with stagnant volume. In the classical advection-
dispersion model, the residence time density is close to the Gaussian
distribution at high Peclet numbers, while it deviates to a more skewed
distribution at low Peclet numbers. This is because, at high Peclet
numbers, the retention times of all the tracer particles are similar and do
not vary significantly from that of the tracer particles flowing with the
mean flow. Thus overall dispersion of the tracer on both sides of the peak
is similar. However, at low Peclet numbers, the retention time of the
tracer particles behind the peak is significantly more, and many more
tracer particles are retained for a much longer time of residence as
compared to the mean flow. In turn, this enhances the dispersion leading
to a non-Gaussian (skewed) distribution of residence time. The skewness
(Sk) and excess kurtosis (Ku) indicate the quantitative deviation from the
Gaussian distribution.

We use Coats and Smith model of tracer transport and using Laplace
transforms, we solve for the exit concentration in the Lalplace domain.
We analytically derive the mean, variance, skewness and kurtosis of the
tracer residence time density as functions of Pe, f and α. Our analytical
temporal moments of tracer exit age density show the behavior of the
moments in the parameter space Pe, f, and α. At low α, all the moments
have a negligible impact of Pe and in addition, non-Gaussian moments
have a negligible impact of immobile volume fraction ð1� f Þ. The second
central moment is monotonic and decreases with increasing Pe,
increasing α, and increasing f. However, the higher order non-Gaussian
moments show non-monotonic behavior in the parameter space, unlike
the classical advection-dispersion model. We use the behavior of the
moments in the parametric space to device a methodology of parameter
estimation, especially the immobile or mobile volume fraction of the
fluid in the porous media.

2. Mathematical model

We first state the classical advection-dispersion-reaction model (ADR)
for flow in a porous medium with reaction term signifying the tracer loss
due to reaction or partitioning in the other phase. It may be noted that in
the present study we have considered no loss of tracer due to reaction or
partitioning (advection-dispersion model, ADM). Next we state the
Coats-Smith model (CSM) (Coats and Smith, 1964) for a porous medium
with immobile volume. These models are used for deriving the Gaussian

and non-Gaussian moments analytically. The governing equation for the
tracer concentration in a porous medium using
advection-dispersion-reaction model is

∂bC
∂t ¼ �u

∂bC
∂x þ D

∂2 bC
∂x2 � kbC; (1)

where, bCðt; xÞ is the tracer concentration, u is the interstitial velocity of
the fluid in axial direction x, D is the axial dispersion coefficient, k is first
order rate of consumption of tracer (¼0 in the present study) and t is
time. The governing equations for tracer concentration in the porous
medium with mobile volume fraction f and immobile volume fraction 1�
f , as shown in schematic of Fig. 1, given by Coats and Smith (1964) is

f
∂bC
∂t þ ð1� f Þ ∂

bC�

∂t ¼ �u
∂bC
∂x þ D

∂2 bC
∂x2 ; (2a)

ð1� f Þ ∂
bC�

∂t ¼ K
�bC � bC��

(2b)

where, bCðt; xÞ is the tracer concentration in the mobile zone, bC�ðt; xÞ is
the tracer concentration in the immobile zone of the porous medium, and
K is the mass transfer coefficient for the tracer transport between mobile
and immobile zones. All other symbols are the same as used in the
advection-dispersion model. Eq. (2b) is known to cause the tailing effect
in the tracer response at the exit. The flowing length of the fluids in the
porous medium is L. The initial condition for these systems is

bCð0; xÞ ¼ bC�ð0; xÞ ¼ 0 0 < x < L (3)

The boundary conditions for eqs. (1) and (2), using Danckwerts
reasoning (Danckwerts, 1953) is

ubC�t; 0�� ¼ ubC�t; 0þ�� D
∂bC
∂x

����
x¼0þ

(4a)

∂bC
∂x

����
x¼L�

¼ 0 (4b)

We now write these equations in non-dimensional form

∂C
∂τ ¼ �∂C

∂ξ þ 1
Pe

∂2C
∂ξ2

ðADMÞ; (5)

f
∂C
∂τ þ ð1� f Þ ∂C

�

∂τ ¼ �∂C
∂ξ þ 1

Pe
∂2C
∂ξ2

ðCSMÞ; (6a)

ð1� f Þ ∂C
�

∂τ ¼ αðC � C�ÞðCSMÞ (6b)

With initial condition

Cð0; ξÞ ¼ C�ð0; ξÞ ¼ 0 0 < ξ < 1; (7)

Fig. 1. Schematic of a pulse tracer test in a porous medium with a mobile
fraction f and immobile fraction 1� f .
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