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A B S T R A C T

Previous deconvolution algorithms based on B-splines are much easier to be understood and programmed for
academic researchers and engineers. However, due to the use of a linear regularization, their stability is weaker
than that of the commonly used von Schroeter et al.’s deconvolution algorithm in which a nonlinear regulari-
zation is used; the linear regularization can make the deconvolution algorithms less tolerant to data errors. Good
stability for the deconvolution algorithms is very important in order to make deconvolution as a viable tool for
well-test analysis. In the paper, in order to improve the stability of the deconvolution algorithms based on B-
splines, a nonlinear regularization by minimizing the curvature of pressure derivative response, as used in von
Schroeter et al.’s algorithm, is appended instead of the linear regularization. And the corresponding nonlinear
regularization equations are appropriately deduced. In particular, the improved algorithm is based on the
Duhamel principle directly, and the complex transformation by the nonlinear z function, as used in von Schroeter
et al.’s algorithm, is avoided; it does simplify the whole deconvolution process; moreover, the sensitivity matrix of
an involved basic linear system from the measured pressure and rate data can also be solved directly by the
piecewise analytical integration method, which can largely improve the deconvolution computation speed. Ul-
timately, in combination with the nonlinear regularization equations, a nonlinear least-squares problem is
formulated for the stability-improved deconvolution algorithm based on B-splines. Besides, a constraint condition
for tuning the parameter values of the B-spline base and an involved smooth factor is presented for restricting the
nonlinear regularization process. Through a simulated case study, it is found that the nonlinear least-squares
problem can be solved stably by the advanced Powell's Dog Leg method due to its great convergence ability
and numerical stability; and the solution accuracy is also verified. Then the effects of the two parameters on the
type curves of the deconvolution results are analyzed. And the effect of the error in the initial formation pressure
on the type curves of the deconvolution results is also analyzed. Then a statement on how to perform the
nonlinear regularization is presented specifically.

Furthermore, through the study on two simulated cases with added data errors and an actual case, it is
demonstrated that when the nonlinear regularization is appended, the stability of the deconvolution algorithm
based on B-splines can be largely improved for mitigating the effect of data errors; besides, the stability-improved
algorithm based on B-splines even exhibits higher stability than von Schroeter et al.’s algorithm that takes the
same nonlinear regularization method, and the reason can be attributed to the superior properties of the repre-
sentation of the wellbore pressure derivative (to be deconvolved) by B-spline functions in the numerical stability
of computations and the inherent smoothness. Through the test of some simulated cases, it is also concluded that
the stability-improved algorithm based on B-splines by appending the nonlinear regularization still has a high-
level computation speed, which is nearly twenty times more than that of von Schroeter et al.’s algorithm. It
can be attributed to the more undetermined coefficients and the computational complexity resulted from the z-
function transformation in the formulation of von Schroeter et al.’s algorithm.
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1. Introduction

The deconvolution based on Duhamel principle has been widely
applied in the well testing technology in reservoir engineering. The in-
verse problem can provide the equivalent constant unit production rate
pressure response of the well in a reservoir system that is affected by the
variable production rates for the entire duration of the production his-
tory. The relevant deconvolution algorithms have attracted big attentions
over the past forty years (Liu et al., 2017). Due to the commonly existent
errors of wellbore pressure and production rate data in the fields, the
deconvolution computation is always ill-conditioned inherently (Çınar
et al., 2006). As far as we know, although many deconvolution algo-
rithms have been proposed, just several ones appear to exhibit the sta-
bility of data error tolerance; they are proposed by von Schroeter et al.
(von Schroeter et al., 2002; von Schroeter et al., 2004), Levitan et al.
(Levitan, 2005; Levitan et al., 2006) and Ilk et al. (Ilk, 2005; Ilk et al.,
2005; Liu et al., 2017), respectively. Here, these aforementioned
different deconvolution algorithms will be introduced in details. In
addition, it is worth to mention that recently Ahmadi et al. (2017) pre-
sent a new robust deconvolution algorithm with the minimum user
interference, which combines the conveniences of deconvolution in
Laplace domain with a new approach to transform the sampled data from
time domain to Laplace domain without extrapolating the data beyond
the sampling interval; Ahmadi et al.’s algorithm overcomes the limita-
tions of the requirement that the piecewise functions for the sampled
data representation should be defined in the complex plane for the
application of deconvolution in Laplace domain (Al-Ajmi et al., 2008).

It is well known that the Duhamel principle (Çınar et al., 2006) is as
follows:

pini � p ¼ ∫ t
0qðt � τÞp'uðτÞdτ (1)

where t is the time; τ is a variable for the integral; q is the measured
variable rate; p is the measured wellbore pressure corresponding to the
variable rate; pu is the wellbore pressure drop corresponding to the
constant unit rate; pini is the initial formation pressure. The aim of these
deconvolution algorithms is to obtain pu when the data of q and p are
both given.

In order to make sure the positivity of dpu/dln(t) for the relevant
plotting of type curves, z function is defined in von Schroeter et al.’s
deconvolution algorithm (von Schroeter et al., 2002; von Schroeter et al.,
2004), as follows:

z ¼ ln
�
dpuðtÞ
dlnðtÞ

�
(2)

Then Eq. (1) can be equivalently transformed as follows:

pini � p ¼ ∫ lnt
�∞qðt � eτÞezðτÞdτ (3)

Then the aim turns to the solution of z. von Schroeter et al.’s
deconvolution algorithm (von Schroeter et al., 2002; von Schroeter et al.,
2004) accounts for the fitting errors for both the measured pressure data
and rate data; in order to improve the smoothness of the solution of z
when data errors exist, minimization of the curvature of z function is
appended as a nonlinear regularization method. As a result, a total
nonlinear least-squares problem is formulated. As for Levitan et al.’s
deconvolution algorithm (Levitan, 2005; Levitan et al., 2006), their ideas
are also from von Schroeter et al.’s deconvolution algorithm. They are
both based on the same concept of minimizing a nonlinear weighted
least-square objective function, involving the sum of three mismatch
terms including the pressure, the rate and the curvature, for recon-
structing the deconvolved pressure drop and its logarithmic derivative
(Liu et al., 2017). The difference of the two algorithms mainly lies in the
aspects of model assumption and the specific definition of objective
functions. Due to the use of nonlinear regularization i. e. the minimiza-
tion of the curvature instead of the pressure derivative (Ilk, 2005; Ilk

et al., 2005), von Schroeter et al.’s deconvolution algorithm can exhibit
relatively higher stability when data errors exist (Çınar et al., 2006).

Another different deconvolution algorithm based on B-splines is
proposed by Ilk et al. first (Ilk, 2005; Ilk et al., 2005). The algorithm is
based on Eq. (1) directly, and the transformation of Eq. (1) by the
nonlinear z function is avoided; a weighted summation of second-order
B-splines is adopted to reconstruct p'u; and a linear regularization
method is adopted to overcome the effect of data errors, which can make
the logarithmic derivative of pu differ slightly between the B-spline knot
and the middle location between knots (Ilk, 2005; Ilk et al., 2005). In
combination with Laplace transform and numerical Laplace inversion,
the formulated linear least-squares problem can be solved. What's more,
Ilk et al.’s algorithm is further improved by Liu et al. (2017) through a
technique of piecewise analytical integration for calculating the involved
sensitivity matrix (Liu et al., 2017) in the real time space instead of the
Laplace space; then the success of the deconvolution computation based
on B-splines can be guaranteed, and the improved deconvolution algo-
rithm exhibits big advantage in the fast computational speed due to the
use of the analytical solution method.

Good stability of deconvolution algorithms is very necessary in order
to make deconvolution as a viable tool for well-test analysis; and stability
improvement is also the main difficulty in the development of decon-
volution algorithms. Çınar et al. (2006) have ever conducted a compar-
ative study on these deconvolution algorithms mentioned above:
Significantly, it is found that the weaker linear regularization method
applied in the deconvolution algorithms based on B-splines (including Ilk
et al.’s deconvolution algorithm (Ilk, 2005; Ilk et al., 2005) and its
improved version by Liu et al. (2017)) can make the algorithms less
tolerant to data errors; in contrast, von Schroeter et al.’s deconvolution
algorithm shows relatively higher stability by using the nonlinear regu-
larization method, and the deconvolution algorithm has been imple-
mented into Saphir as the pressure transient analysis module of KAPPA
software due to its good stability. However, in von Schroeter et al.’s
deconvolution algorithm, the transformed deconvolution equation of
Duhamel principle i. e. Eq. (3) is used, which makes the computation
process become very complicated; in contrast, the deconvolution equa-
tion of Duhamel principle i. e. Eq. (1) is directly used in the algorithms
based on the B-splines, and the involved sensitivity matrix can also be
solved directly by the piecewise analytical integration method, which
can largely improve the computation speed; and its computation pro-
cedures are much easier to be understood and programmed for academic
researchers and engineers. What's more, representation of the unknown
function by B-spline functions, which are piecewise defined polynomial
functions, has superior properties such as local effects of coefficients,
numerical stability of computations and inherent smoothness (Jauch
et al., 2017) in comparison with representation of the unknown function
by piecewise linear approximations as used in von Schroeter et al.’s al-
gorithm. Therefore, in view of the above-mentioned facts, it is very
necessary to further improve the stability of the algorithms based on
B-splines. For the purpose, an idea can be presented naturally that the
nonlinear regularization method in von Schroeter et al.’s algorithm may
be applied into the algorithms based on B-splines.

In this paper, based on the improved version of Ilk et al.’s deconvo-
lution algorithm (Liu et al., 2017), the nonlinear regularization method,
as used in von Schroeter et al.’s deconvolution algorithm, is appended so
as to largely improve the stability of the algorithms based on B-splines. It
can make the deconvolution algorithm based on B-splines to be more
acceptable and more advanced for its applications in the well testing
technology. The schematics for the stability improvement of the decon-
volution algorithm based on B-splines are shown in Fig. 1. From Fig. 1, it
can be seen that the stability-improved algorithm can inherit good
“genes” including the representation of p'u by B-splines (Liu et al., 2017),
no complicated z-function transformation of the convolution equation
(Liu et al., 2017), the fast analytical solution method for calculating the
elements of sensitivity matrix (Liu et al., 2017) and the nonlinear
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