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A B S T R A C T

The geometrical and contact nonlinearities in tubular buckling problem lead to convergence difficulty in calcu-
lation. To solve this problem, we present a slow dynamic method and its solution strategies for the nonlinear static
buckling analysis based on the implicit finite element method. For different length and boundary conditions, we
calculate the length of each section of the helical buckling configuration. To measure the pitch of helical buckling,
we introduce two methods. The first method is to use the spiral angle between the bottom and top contact points
to measure the pitch, and the second method is to use the spiral angle of the continuous contact section to
measure the pitch. For the first method, the string has three types of buckling configurations for different
boundary conditions without the tensile section. With the tensile section, the helical buckling configuration is
composed of the bottom compressed section, the middle helically buckled section, the top compressed section and
the tensile section for the hinged or clamped boundary at both ends. For the second method, the buckling
configuration consists of four non-contact sections, one continuous contact section without the tensile section. A
tension section is added to the buckling configuration for the influence of the tension section. The critical load
decreases gradually and tends to the minimum with the effect of the tension section. Since the critical load of the
second methods is greater than the value of the first one, it is recommended that the former method be adopted in
engineering applications.

1. Introduction

Tubular strings constrained by wellbores are subjected to the action of
a compressive force in the bottom due to their own weight. When the
bottom axial force exceeds a certain value, its elastic stability is lost and
enters into buckling state. For instance, drill string buckling could change
the bit direction, increase the lateral force and friction force, and make
drill strings lock-up, even fatigue failure.

The analysis of critical buckling load of tubular string in vertical
wellbores is one of the important problems. Lubinski (1950) firstly
studied the stability of drill strings in vertical wellbores. He deduced the
bending equation of drill strings in two-dimensional plane and its series
solutions with the beam-column model. For the hinged drill string with a
dimensionless length of 8, Lubinski gave the calculation formula of initial
critical load of drill strings in vertical plane:

Fsin ¼ 1:94⋅
ffiffiffiffiffiffiffiffiffi
EIq23

p
: (1)

In fact, the above critical load is not affected by the wellbore con-
straints, similar to the critical load of compressed bars applied by
compressive force investigated by Timoshenko and Gere, (1961).

When the tubular string occurs the initial buckling above, the string is
in contact with the wellbore with the increase of the compressive force on
the bottom. The sinusoidal and helical buckling would successively
occur. Lubinski et al. (1962) firstly put forward the concept of helical
buckling and proposed the calculation method for this buckling. They
assumed that the buckling deformation was a three-dimensional helix
and deduced the pitch-force relationship with the energy method

Fhel ¼ 8π2EI
�
p2: (2)

Moreover, obviously the helical buckling configuration in the
compression section is a helix with variable pitches in fact, and the pitch
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become larger when closer to the neutral point.
Mitchell (1988) also studied tubular string helical buckling and

proved that the helical buckling model presented by Lubinski was just an
approximate result. Mitchell's results indicated that the Lubinski
pitch-force relationship became invalid to depict the tubular buckling
behavior near the neutral point because the tubular string might be not in
contact with the wellbore.

Under the assumption of variable pitches, Kwon (1988) analyzed the
helical buckling of vertical tubular string with weight. Calculation for-
mula of pitches was achieved through solving the general fourth-order
nonlinear differential equation using virtual work principle. It should
be noted that in Kwon equation, if z¼ 0, the obtained calculation formula
of pitches was in line with formula (2) and could be expressed as

p ¼ 4:29⋅
ffiffiffiffiffiffiffiffiffiffi
EI=q3

p
: (3)

According to Kwon equation, the first pitch on the top showed large
differences when the length of compression section were different. For
example, the dimensional compression section lengths of 4.29, 15.50,
21.93 and 29.35 corresponded to the 1th, 5th, 8th and 12th non-uniform
pitch, respectively. Then the dimensional length of the first pitch on the
top were 4.29, 4.79, 5.09 and 5.40, respectively, signifying Kwon for-
mula was non-universal.

Zhang (1989) also investigated the helical buckling of tubular string
with weight and deduced the formula of variable pitches with energy
method:

pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9i2π2EI=q3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ði� 1Þ2π2EI=q

3
q

; (4)

where i is the ith full helix counted from top to bottom. If i¼ 1, the first
pitch at the top is

p ¼ 4:46⋅
ffiffiffiffiffiffiffiffiffiffi
EI=q3

p
: (5)

In addition, Wu (1992), Gao (1996, 2006), Mitchell (2002, 2012),
Lukasiewicz and Knight, (2006), Thompson et al., (2012, Thompson and
Heijden, 2013), Gulyayev et al., (2014), Sun and Lukasiewicz, (2006, Sun
et al., 2015) and Yue et al., (2017) etc. also investigated the helical
buckling of tubular string using different theoretical or experimental
methods. Hajianmaleki and Daily, (2014) researched the helical buckling
of tubular string with weight in vertical wellbores with the explicit
finite-element method by ABAQUS software. Table 1 displays the
dimensionless pitches of helical buckling in vertical wellbores reported in
some literature, the maximum value is 35.57% higher than theminimum.

The helical buckling formulas of tubular string mentioned above were
obtained under the assumptions of constant or variable pitches, boundary
conditions were universally ignored. However, in addition to the well-
bore constraint, the vertical well string has boundary constraints on both
ends. Furthermore, the current researches mainly focused on the buck-
ling below the neutral point. The effect of tension section above the
neutral point on the buckling was not taken into account. In particular,
for the tubular string suspended in vertical wellbores, its top and bottom
are subjected to the action of a tensile force and a compressive force
respectively under its own weight, which results in the buckling problem
more complex.

Although researchers realized that tubular string helical buckling
cannot happen until a full pitch was formed, the calculated pitch lengths
in helical section were obviously different as shown in Table 1. The
critical helical buckling load was defined as the weight on the bottom of

the continuous contact section. That is to say, the dimensionless pitch in
helix section of tubular string was the dimensionless critical helical
buckling load. For example, Gao (2006) calculated the pitch in helix
section and the pitch was p ¼ 5:62⋅

ffiffiffiffiffiffiffiffiffiffi
EI=q3

p
. The corresponding critical

helical buckling load was Fhel ¼ 5:62⋅
ffiffiffiffiffiffiffiffiffi
EIq23

p
. The effects of boundary

conditions on both ends and the tubular string length on the helical
buckling were not considered. Hence, this method was not suitable to
calculate critical helical buckling load of the suspended tubular string.

Gao and Huang, (2015) looked forward to the research methods of
helical buckling for suspended tubular string and put forward a research
idea: the top suspended section was depicted by the beam-column model
and the bottom continuous contact section was depicted by the buckling
differential equation. In view of this research assumption, Huang et al.,
(2016) divided the string into four suspended sections and one contin-
uous contact section. The buckling problem of the tubular string was
transformed into a system of nonlinear equations by substituting relevant
continuity, boundary and stability conditions. He solved these equations
with iteration method and obtained the critical buckling loads.

For tubular string suspended in wellbore, the geometrical and contact
nonlinearities in helical buckling problem lead to convergence difficulty
in calculation. Therefore, we propose slow dynamic method and its so-
lution strategies to analysis helical buckling of tubular string. We
investigate the influence factors in the finite element algorithm by ex-
amples. Then we research the effects of suspended tension forces, tubular
string lengths and boundary conditions on critical helical buckling load.

2. Mechanical model

In order to investigate the critical helical buckling load of the sus-
pended tubular string in vertical wellbores, we establish a mechanical
model as shown in Fig. 1. It is assumed that: (a) the tubular string and
wellbore are characterized by constant cross section and the effect of tool
joints etc. on buckling is neglected; (b) external loads include the sus-
pended tension force on the top of the tubular string and its weight; (c)
the tubular string is linear elastic; (d) the tubular string and wellbore has
initial annular clearance, and the tubular string is concentric with the
wellbore before deformation, as shown in Fig. 1 (a); (e) the friction force
between the tubular string and wellbore's wall is ignored; (f) the final
stable state of static helical buckling will be researched and the transient
effect of lifting and lowering tubular string is neglected.

For example, the both ends are hinged in the mechanical model. The
ends are subjected to lateral restraints. In addition, the suspended tension
force and axial constraint are applied, respectively, on the top and bot-
tom ends of the tubular string. Due to its own weight, the top of tubular
string is subjected to the tensile force, expressed in FH ¼ ξT⋅

ffiffiffiffiffiffiffiffiffi
EIq23

p
. The

reaction force of axial constraint is the compressive force on the bottom,
expressed in FB ¼ ξC⋅

ffiffiffiffiffiffiffiffiffi
EIq23

p
. The suspended tensile force subjected on the

top is small and the compressive force applied on the bottom is large,
leading to the tubular string buckled, as shown in Fig. 1 (b).

The tubular string in vertical wellbores is flexible. When the tensile
force on the top decreases, the axial compressive force on the bottom is
increased, the stiffness in compressive section decreases. Then the
tubular string buckles and loses its stability. Then lateral bending occurs,
resulting in large lateral displacement and rotation. The relationship
between compressive force and deformation of tubular string is no longer
linear. It belongs to the geometrical nonlinear problem. During the lateral
deformation, the tubular string is constrained by the wellbore. Contact

Table 1
Dimensionless pitches of helical buckling in vertical wellbores.

Author Lubinski et al., (1962) Kwon (1988) Zhang (1989) Wu (1992) Gao (1996) Gao (2006) Hajianmaleki and Daily, (2014)

Dimensionless pitch (
ffiffiffiffiffiffiffiffiffiffi
EI=q3

p
) 4.29 4.29–5.40 4.46 5.55 5.816 5.62 5.25

Remarks *,# **, # ** **, # Asymptotic solution **, # **, Finite element method

*Uniform pitch, ** Non-uniform pitch, # Energy method.
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