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ARTICLE INFO ABSTRACT

Surrogate models, or proxies, provide computationally inexpensive alternatives for approximating reservoir re-
sponses. Proxy models are routinely developed to generate spatially-varying output such as field pressures and
saturations, or well responses such as production rates and bottom-hole pressures. In this study, a machine
learning approach is adopted to predict reservoir responses based on injector well locations. The proxy developed
in this work is trained to reproduce reservoir-wide objective functions, i.e., total profit, cumulative oil/gas pro-
duced, or net CO, stored.

Because of the geological complexity of most reservoirs, slight adjustments in injector well locations could yield
dramatic changes in the objective function responses. Hence, most proxies do not include well locations as inputs
in their formulation. This complex relationship between well locations and reservoir-wide responses makes non-
parametric, machine learning-based methods an attractive option. We introduce a machine learning approach in
which the primary predictors are physical well locations, and the primary response is a defined objective function
such as NPV. The complexity of the response surface with respect to well locations necessitates that we augment
the predictor variables with well-to-well pairwise connectivities, injector block permeabilities and porosities, and
initial injector block saturations. Introducing well-to-well connectivities yields significant improvements in pre-
diction accuracy. Connectivities are represented by ‘diffusive times of flight' of the pressure front, which is
computed using the Fast Marching Method.

A handful of training observations are obtained from numerical reservoir simulations. The Extreme Gradient
Boosting method is then used to build an intelligent model for making predictions given any set of observations.
The proposed approach is demonstrated using five synthetic case studies: i) a homogeneous reservoir waterflood,
ii) a channelized reservoir waterflood, iii) a 20-model ensemble waterflood, iv) a CO; flood in a heterogeneous
reservoir, v) a CO; flood in a heterogeneous reservoir with complex topography. Results show a significant
correlation between proxy predictions and reservoir simulation results.
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1. Introduction

Accurate prediction of reservoir behavior in response to changes in
control parameters is an important aspect of reservoir management and
optimization. Full-physics numerical simulations currently provide the
most accurate approach for estimating reservoir response and perfor-
mance. Computing resources to run such simulators are however signif-
icant, limiting their applicability for problems requiring many forward
evaluations. Physics-based proxy models have historically been devel-
oped to address this issue. Sayarpour et al. (2007) applied
capacitance-resistance models for a quick evaluation of waterflood per-
formance during optimization. The fast marching method has been
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proposed by Sharifi et al. (2014), Zhang et al. (2014), Leem et al. (2015),
Xie et al. (2015), among others, as a method to compute the shape of
pressure front propagation in heterogeneous reservoirs. Jeong and Sri-
nivasan (2016) used scaled connectivity analysis for predicting CO,
plume migration. Nwachukwu et al. (2017) coupled a particle tracking
proxy with a finite element solver to mimic geomechanical effects of CO,
injection.

Recent advances in artificial intelligence and statistical learning
methods have been accompanied by an increase in the development of
non-physics based proxies. These approaches use purely data-driven
tools to find complex patterns between control parameters and reser-
voir response. The non-physics based proxies serve as a ‘black-box’
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Fig. 1. Workflow of the proposed algorithm.
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Fig. 2. (a) Homogeneous model used for validation, (b) true profit response
(in MM$) as a function of injector location.

(b)

predictor that operates on input variables such as well rates, locations,
and pressures, to produce response variables such as NPV. Sampaio et al.
(2009) applied feed-forward artificial neural networks to reproduce the
response surface of a heterogeneous reservoir model during history
matching. Memon et al. (2014) used radial basis neural networks to
predict bottom-hole pressures in an under-saturated reservoir. Amini et
al. (2012) built a back propagating neural network to generate CO5 and
pressure distributions with high accuracy in a few seconds.

The proxy developed in this study uses Extreme Gradient Boosting
(XGBoost), an algorithm based on decision trees, introduced by Chen and
Guestrin (2016). XGBoost is a variation of the Gradient Boosting Method
(GBM) (Friedman, 2001), designed to be more computationally efficient
and flexible. Zhang and Haghani (2015) used GBM to analyze and model
time travel along two freeway sections in Maryland. Moisen et al. (2006)
applied the gradient boosting method to predict tree species presence and
basal area in the mountain ranges of Utah. To the best of our knowledge,
this study presents the first application of GBM in surrogate reservoir
modeling. The training dataset used to build the proxy is obtained by
running sample numerical simulations with different input sets. The goal
is to be able to train a model with relatively few simulations such that the
response surface can be accurately recreated.
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1.1. Well placement evaluation

Determining locations for optimal well placement is a habitual issue
in reservoir engineering projects. Giliyagiiler (2002) wused the
non-gradient-based genetic algorithm (GA) to optimize placement of
injection wells in the Pompano field in the Gulf of Mexico. Forouzanfar
and Reynolds (2014) proposed a gradient-based scheme to jointly opti-
mize the number of wells, well locations and well controls. In the
aforementioned studies, numerical simulators were used to evaluate the
impact of well placement on the response variables. Parallel computing
resources were employed to speed up the simulation process, however,
the large size (number of cells) of the field models still posed significant
challenges in terms of computational time.

Because of geological complexities, the problem of training a pre-
dictive model to generate response values using spatial well locations as
input parameters is not straightforward. Surrogate models are typically
developed with the restriction that well locations are predefined and
unchanging. There haven't been many studies in which well locations are
included as parameters in proxy development. A study by Hassani et al.
(2011) presents a promising attempt to address this challenge. They
introduce a data-driven approach in which spatial parameters of a hori-
zontal well are used to predict its cumulative oil production. The study
was however based on a single homogeneous model and did not present
an application to diverse geologic scenarios.

In this study, we enhance the approach presented in Hassani et al.
(2011) to account for heterogeneity, and propose a novel idea for
improving prediction accuracy. To resolve the challenge posed by
geologic complexity, we propose the idea of augmenting physical well
locations with well-to-well connectivities as the primary predictor vari-
ables. Since connectivities carry implicit information about the reservoir
geology, these measures correlate much better with the response surface
than spatial locations. In addition to improving prediction accuracy, this
also facilitates extrapolation between different geologic models, i.e., one
predictive model can be used to accurately generate the response for
different geologic models in an ensemble. A demonstration of this is
shown in a later section.

1.2. Connectivity measures

Adequate characterization of connectivity (high-conductivity flow
paths and low-conductivity flow barriers) is crucial when exploring po-
tential locations for well placement. Knudby and Carrera (2004) suggest
two requirements for any valid measure of connectivity: i) it should be
quantifiable and measurable, ii) it should contain information on the
characteristics of flow and transport in the medium.

A measure of connectivity presented by Renard and de Marsily (1997)
is the exponent for power averaging of permeabilities. Effective con-
ductivity of a medium, K¢ can be obtained by power averaging of the
point values of permeability K by

1

Ky = F JK (x)de] o)
Vv

where V is the reservoir volume and x is the location in space. If K is
known, for example from a pumping test (Meier et al., 1998), then the
exponent ¢ can be interpreted as a measure of field connectivity (Knudby
and Carrera, 2004). The tractability of this measure makes it an attractive
choice, however, it is solely reliant on permeability and neglects other
crucial parameters like porosity, fluid compressibility etc. Moreover, it
only provides a singular reservoir connectivity value for a complicated
connectivity network, whereas pairwise point-to-point connectivities are
needed for this study.

Capacitance-Resistance Modeling (CRM) has been implemented by
Sayarpour et al. (2007), Nguyen et al. (2011), Cao et al. (2014), and
others, as an approach to quantify interwell connectivity in waterfloods
and CO; floods. This method is based on the continuity equation and
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