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A B S T R A C T

During mud circulation and cementing operations, non-Newtonian completion fluids are injected along the
wellbore annular space formed by the gap between the outer wall of the casing and the rock face. During such
processes, these fluids displace each-other and follow a complex path given by pressure gradients, rheology and
density contrasts, casing rotation and reciprocation and by the actual shape and orientation of the annulus. Muds
and cement slurries also often exhibit a yield stress which may represent additional challenge for optimal fluid
removal and cement coverage. This paper presents a novel approach to solving the 3D flow and displacement of
completion fluids in the annulus. In particular, this work extends a model published in Tardy and Bittleston
(2015) which solves the flow in the 2D axial-azimuthal plane, to now capture fluid distribution and velocity
profiles across the gap width in the 3D axial-azimuthal-radial space. The new 3D model is derived using the so-
called narrow-gap approximation for the momentum balance equations. This approximation provides a mean to
solve the 3D velocity and concentration fields while solving a 2D-only elliptic pressure equation, which is
significantly faster to solve than the original 3D pressure equation, and without suffering any significant loss of
accuracy.

1. Introduction

Cements support and protect well casings and help attain zonal
isolation. Failure to accomplish proper cement coverage can result in
unsafe, environmentally dangerous, and less profitable wells. In order to
achieve optimum cement coverage, no mud should be left in the annular
space as cement may not set along mud channels, and as a path might be
left behind the casing that the formation fluids may follow. By-passed
mud may take the form of channels occupying the entire annular gap
in some parts of the wellbore, typically along the narrow part of the
annulus where the casing is off-centered. Additionally, static mud layers
may also be left along the annular walls in places where wall shear-
stresses have not been sufficiently large to fully displace the mud. For-
mation fluid migration along the annulus may cause loss of produced
hydrocarbon into a lower pressure zone, which may or may not be part of
the production interval, and hydrocarbon contamination of shallower
aquifers. The migration may also cause pressure imbalance between
annulus and tubing resulting in pipe deformation or burst and to a
blowout at the wellhead.

In order to predict the final distribution of the cement, a model must
be able to describe the geometry of the annulus. Typically, the annulus

forms a narrow space of varying width. The geometry varies axially due
to changes in wellbore and/or casing diameters, and azimuthally due to
irregular wellbore shapes and to casing eccentricity. The orientation of
the casing eccentricity may be arbitrary and is a result of the distribution
of friction along the casing during its descent into the wellbore. Addi-
tionally, it is not uncommon to rotate and/or reciprocate the casing in the
goal of maximizing mud removal during cementing operations. The
shearing motion created by the casing movement may force the mud to
yield in places where it would remain gelled otherwise. It may also force
the slurry to reach some narrower parts of the gap that would remain
unreachable otherwise. The model must also account for the non-
Newtonian nature of the completion fluids. Traditionally, such fluids
are described as Herschel-Bulkley fluids. Such fluids have a shear-
dependent viscosity and may have a yield-stress. The yield-stress is a
measure of the wall shear-stress below which the fluid stops flowing and
freezes like a solid. Gel strength is also a common feature of these fluids, a
measure of the shear-stress that must be exceeded before the fluid starts
flowing while initially at rest. The fluids involved in a pumping schedule
will have different rheological properties and densities which, even in a
regular axisymmetric annulus, may be responsible for complex non-
uniform displacement patterns.
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A review of previous studies of the annular flow of visco-plastic fluids
has been published in the introduction of Tardy and Bittleston (2015).
Their work consisted in extending the functionalities of the models
developed in Bittleston et al. (2002), Pelipenko and Frigaard (2004a,
2004b). In these studies, classical dimensional scaling methods are used
to reduce the full 3D equations of motion to a 2D gap-averaged model.
The resulting models are indeed 2D ones or, more precisely, (2 þ 1)D
models considering that the radial dimension (the dimension that goes
from the casing wall to the rock face) is not neglected but averaged. As a
result, these models solve the flow in the axial-azimuthal plane using
gap-averaged fluid properties such as concentration, friction factor, ve-
locity, and density. In Tardy and Bittleston (2015), the possibility to
simulate casing rotation and reciprocation as well as arbitrary casing
standoff and standoff orientation was added to previously published
models. It was then showed that the model could capture complex and
relevant flow patterns often observed when fluids have rheological
properties and/or density contrasts, and when the casing is off-centered
and moved during the flow.

One missing capability of the model presented in Tardy and Bittleston
(2015) and the previous art is the determination of the fluid velocity and
fluid concentrations profiles across the gap. Indeed, in their models,
velocities and concentrations are averaged in the radial dimension,
resulting in a flat velocity profile and a fully mixed fluid mixture across
the gap. In reality, as one fluid displaces another, the fluid-fluid interface
across the gap is rarely flat, and some displaced fluidmay be by-passed by
the displacing one in the central part of the gap. If the displaced fluid is
viscous enough, residual layers may subsist for some time along the

annular walls. It may be important to predict such situations when trying
to optimize mud displacement. Also, when the casing is moved, a
non-constant velocity profile is created across the gap. For instance, when
the casing rotates more fluid is dragged with the casing near the casing
wall than near the rock face promoting the spread of the fluid-fluid
interface. With the new model presented here, such situations may
now be predicted.

The newmodel builds on the model presented in Tardy and Bittleston
(2015) and extends its capabilities by not relying on the gap-averaging of
the fluid properties. The new model still relies on the so-called nar-
row-gap approximation which allows us to solve the 3D velocity and
concentration profiles while solving a 2D-only elliptic pressure equation.
This simplification has a significant impact on the possibility to solve true
3D flow patterns in a reasonable amount of time. Indeed, solving the
original 3D non-linear elliptic pressure equations remains far too much
time-consuming when considering realistic situations with sufficiently
high resolution levels, the current computing powers and the time a field
engineer can spare for simulating an actual cementing job. A similar
philosophy was used in Wachs et al. (2009) to describe the flow of a
single viscoplastic thyxotropic fluid in pipes. There, the authors also used
the lubrication technique to extent their original 1D flowmodel to a 1.5D
one where pressure is a function of the axial distance only (thus a 1D
pressure) while fluid properties and axial velocity may vary radially (thus
a 2D flow pattern).

2. The 3D model

The model is developed in Appendix A and only the final equations
are presented below. We consider the injection of multiple fluids into the
annulus. Initially, the annulus is occupied by a given number of fluids
with a known distribution. We denote nf the number of fluids that are
present at any time in the annulus during the pumping. Each fluid is
identified by an index k 2 ½1; nf � and characterized by its density ρk. The
volume fraction of fluid k 2 ½1; nf � at a given time and position in the
annulus is denoted ~ck. Each fluid is also characterized by its own set of
rheological parameters, as will be detailed in Section 2.5. We aim at
tracking the fluids' volume fractions in time, along the annulus, axially,
azimuthally, and radially (hence the 3D nature of the model) Thus, the
model calculates the time-evolution and distribution of the fluid's volume
fractions, using nf fluid transport equations, the axial, azimuthal and
radial velocities in the axial-azimuthal-radial domain formed by the
annulus. The pressure is solved using a 2D non-linear elliptic pressure
equation.

2.1. The model assumptions

The use of this model is restricted to laminar flow (zero-th order
approximation of the momentum balance equation) that is typically valid
for narrow enough annuli. Examination of field conditions suggests that
laminar flow and narrow-gap (see Eq. (3)) are the most common situa-
tions for primary cementing operations. This model is not expected to
remain valid in the case of wider annuli (say rc=rw � 0:8 as found in
Szabo and Hassager (1992), rc and rw being the casing and wellbore radii,
respectively) and for turbulent flow. Wider annuli may be observed
during other type of cementing operations, such as in remedial cement-
ing where smaller pipe diameters are used to convey slurries. The model

Fig. 1. Schematic of the annular space geometry and geometrical variables.

Fig. 2. Schematic of the annular domain decomposition into nr layers for a given z.

Table 1
Flow parameters for Fig. 3.

Experiment A1 A2

Bn 0 0
Rv 0.971 0.926
ε 1.19 0.992
e 0.5 0.8
n 1 1
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