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A B S T R A C T

Owing to neglecting the quadratic gradient term (QGT) in the governing equation, the conventional method
proposed by van Everdingen and Hurst [Trans. AIME, 1949, 186, 305–324] for obtaining the transient flow rate is
inconsistent with material balance and may lead to errors in the prediction of the flow rate for the wells producing
at a constant bottomhole pressure. This paper extends the conventional method to consider the effect of the QGT.
If the pressure solution in Laplace space under the constant-rate-production condition is known, the flow-rate
solution in Laplace space under the constant-pressure-production condition including the effect of the QGT can
be determined by the proposed method. Flow-rate solutions for horizontal wells in reservoirs with different lateral
outer boundaries under the constant-pressure-production condition are obtained by the proposed method and the
conventional method, respectively. The difference between the flow-rate solutions with and without the effect of
the QGT is qualitatively and quantitatively analyzed. The proposed method for obtaining the transient flow rate is
consistent with material balance, and thus it can be used to obtain more accurate transient flow rate.

1. Introduction

In recent years, well test analysis and rate decline analysis have been
widely used to recognize the characteristics of the reservoirs and fluid
flows. Two cases, namely the constant-rate-production case and the
constant-pressure-production case, have attracted great attention in
making the reservoir studies. The bottomhole-pressure solution in the
constant-rate-production case and the flow-rate solution in the constant-
pressure-production case not only reflect the performance of the wells
(Xu et al., 2013; Jia et al., 2015) but also can be employed to do well test
analysis (Earlougher, 1977) and rate decline analysis (Blasingame
et al., 1991).

During the last decade, many scholars have established a great variety
of seepage models and investigated the transient pressure responses for
various wells producing at a constant flow rate, such as the vertical wells
(Van Everdingen and Hurst, 1949; Ren and Guo, 2014; Moradi et al.,
2017), fractured vertical wells (Cinco-Ley and Samaniego, 1981; Beru-
men et al., 2000; Ren and Guo, 2015a), horizontal wells (Ozkan, 1988;
Nie et al., 2012), multiple fractured horizontal wells (Wan and Aziz,
2002; Luo et al., 2014; Ren and Guo, 2015b, 2015c) and so on. However,
most of the models do not take into account the effect of the quadratic
gradient term (QGT) in the governing equation, which makes the models

be inconsistent with material balance and may lead to significant errors
in the predicted pressure for the wells producing at a constant flow rate.
Recently, much attention has been paid to the transient pressure re-
sponses with the effect of the QGT. Some scholars have investigated the
pressure behaviors with the effect of the QGT under the constant-rate-
production condition for various wells in different reservoir scenarios,
such as vertical wells in homogeneous reservoirs (Finjord, 1986), vertical
wells in dual-porosity reservoirs (Bai et al., 1994), vertical wells in fractal
double-porosity reservoirs (Yao et al., 2012), vertical wells in
multiple-zone composite reservoirs (Wang et al., 2013), horizontal wells
in homogeneous reservoirs (Lu et al., 2015), multiple fractured hori-
zontal wells with stimulated reservoir volume (Ren and Guo, 2017), and
so on.

Compared with the bottomhole-pressure solution in the constant-
rate-production case, it is difficult to directly establish models to obtain
the flow-rate solution for the well producing at a constant bottomhole
pressure, especially when the well type is quite complex. In general, if the
bottomhole-pressure solution in Laplace space under the constant-rate-
production condition is known, the flow-rate solution in Laplace space
under the constant-pressure-production condition can be obtained by the
Duhamel's principle (Van Everdingen and Hurst, 1949). Although this
method has been widely used to obtain the flow-rate solutions for various
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wells in different reservoir scenarios (Ozkan and Raghavan, 1991; Guo
et al., 2012; Zhao et al., 2016), the calculated flow-rate solutions fail to
consider the effect of the QGT and may result in errors in the prediction
of the flow rate for the wells producing at a constant bottomhole pres-
sure. In addition, some scholars (Cao et al., 2004) have directly estab-
lished the explicit model for vertical wells in the
constant-pressure-production case and derived the analytical solutions
with the effect of the QGT, but there are also many challenges in
obtaining the flow-rate solutions with the effect of the QGT based on the
explicit models for complex well types. Inspired by the relationship be-
tween the pressure solution and flow-rate solution proposed by van
Everdingen and Hurst (1949), it is natural to think that whether there is a
similar formula including the effect of the QGT. If the pressure solution in
Laplace space under the constant-rate-production condition is known,
the flow-rate solution in Laplace space under the
constant-pressure-production condition including the effect of the QGT
can be determined by the new formula.

In this work, we derive a general flow-rate solution for various wells
under the constant-pressure-production condition including the effect of
the QGT, and then we take the horizontal well as an example to analyze
the characteristics of the flow rate decline with the effect of the QGT.
Finally, we make a comparison between the flow-rate solutions with and
without the effect of the QGT.

2. Mathematical formulation

In the following, we will focus on deriving the general flow-rate so-
lution under the constant-pressure-production condition for the material-
balance flow system which can be described by the nonlinear equation
including the QGT. For simplicity and without loss of generality, here we
consider a completely penetrating vertical well like the study conducted
by van Everdingen and Hurst (1949), but the derived solution is general
and suitable for a variety of well types.

We consider the flow of a single-phase liquid (oil or water) in a ho-
mogeneous and isotropic medium with the closed top and bottom

boundaries. The fluid in the medium has constant compressibility
and viscosity.

2.1. Nonlinear governing equation

Considering a two-dimensional radial-flow system, the continuity
equation based on the mass conservation is expressed as (Ahmed, 2010)

1
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: (1)

Fluid flow in the medium is consistent with the Darcy law, which is
given as

υ ¼ k
μ

∂p
∂r
: (2)

Fluid compressibility is defined by

cf ¼ 1
ρ

∂ρ
∂p
: (3)

With the assumption of constant permeability, porosity and viscosity,
we follow the standard procedure to derive the governing equation as
follows (see Appendix A) (Finjord, 1986):
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It is observed that Eq. (4) is the nonlinear equation including the QGT,
namely the second term on the left side of Eq. (4). If the QGT is negligible,
the nonlinear governing equation is simplified as the conventional linear
governing equation (Van Everdingen and Hurst, 1949):

1
r
∂
∂r

�
r
∂p
∂r

�
¼ ϕμcf

k
∂p
∂t
: (5)

Nomenclature

Roman symbols
B volume factor, m3=m3

cf fluid compressibility, Pa�1

h formation thickness, m
k formation permeability, m2

kh horizontal permeability, m2

kv vertical permeability, m2

L half-length of horizontal well, m
LD dimensionless half-length of horizontal well, dimensionless
p formation pressure, Pa
pi initial formation pressure, Pa
pw bottomhole pressure, Pa
q flow rate under surface conditions, m3=s
q* transformed flow rate, defined in Eq. (15)
qDl dimensionless flow rate without the effect of the QGT,

dimensionless
qDnl dimensionless flow rate with the effect of the QGT,

dimensionless
Q cumulative flow rate under surface conditions, m3

Q* transformed cumulative flow rate, defined in Eq. (25)
r horizontal radial distance in reservoir formation,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, m

re outer boundary radius, m

rw wellbore radius, m
s Laplace transform variable, dimensionless
t time, s
x; y; z Cartesian coordinates, m
zw vertical coordinate of the well center, m

Greek symbols
α dimensionless nonlinear flow coefficient, dimensionless
Δp pressure difference, Δp ¼ pi � p, Pa
Δp* normalized density change, defined in Eq. (22)
ΔqD absolute difference between the flow-rate solutions with

and without the effect of the QGT, dimensionless
Δρ density difference, Δρ ¼ ρi � ρ, kg=m3

δ relative difference between the flow-rate solutions with and
without the effect of the QGT, dimensionless

μ fluid viscosity, Pa⋅s
ρ fluid density, kg=m3

ρi initial fluid density, kg=m3

υ velocity, m=s
ϕ formation porosity, fraction

Superscript
� Laplace space

Subscript
D dimensionless
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