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A B S T R A C T

Economic success in the Cana Woodford shale play in Western Oklahoma has been largely due to field devel-
opment using vertically fractured long horizontal laterals. In progressing from the field delineation phase, where
sections are held by single well, to the field development phase, where multiple new wells are added to a pre-
viously produced section, many of the pre-existing “parent” wells suffer significant reduction in productivity as a
result of interference from fracturing operations in the neighboring “infill” wells. We hypothesized that the
change in the parent well's productivity was due to changes in fracture conductivity and/or changes in effective
fracture length. In order to investigate the validity of our hypothesis, we developed a novel high-resolution
spectral gas reservoir simulator to determine whether we could mimic the observed production behavior in the
field. In particular, we wanted a simulator that would be immune to spatial truncation errors associated with
finite difference schemes, and which would allow us to clearly examine interaction between nanodarcy reservoir
matrix and high permeability narrow fractures; in addition, we needed the ability to alter fracture permeability
with time to simulate the hypothesized effects of fracture interference. This paper details development of the
spectral simulator and demonstrates that changes in fracture conductivity and length due to the interference event
can account for observed productivity changes. We qualitatively compare simulator data to observed field data
and show that changes in well productivity due to fracture interference can be explained by alteration of fracture
half length and/or fracture conductivity.

1. Introduction

The effects of fracture interference on production data in the Cana
Woodford shale play in Western Oklahoma have been documented in
Ajani and Kelkar (2012), where pre-existing parent wells showed sig-
nificant losses in productivity due to fracture interference from infill
wells. Following that work, a multitude of papers were presented to try to
understand and quantify the effects of fracture interference in shale
plays; Yu et al. (2016) provided an excellent review on the literature
available up to 2016. They noted that “the impact of spatial changes in
fracture conductivity, number of connecting fractures, and complex
fracture geometry on the pressure response of well interference have not
been systematically modeled in previous studies”. They presented a
semi-analytical segmented fracture model for simulating fracture “hits”
and showed good agreement between their model and a numerical
simulator, but did not compare their model to actual field data.

Tang et al. (2017) presented a 3D coupled compositional reservoir
simulator and multi-segment wellbore model to simulate the perfor-
mance of parent and infill wells under the impact of fracture interference.

They showed that fracture interference could result in increases or de-
creases in the impacted parent well's productivity. A productivity in-
crease results from an infill well whose completions enlarge the
stimulated reservoir volume (SRV) of the parent well, whereas a pro-
ductivity decrease results from the infill well sharing some of the parent
well's SRV. Qualitatively, their “negative impact” production results
resemble impacted parent production data observed in the Cana Wood-
ford play.

In this work, we introduce another high-resolution tool to the effort of
simulating and trying to understand the mechanisms affecting produc-
tion in hydraulically fractured horizontal wells in shale plays: spectral
reservoir simulation. Application of Spectral methods to the approximate
solution of partial differential equations is a well-established technique in
the field of numerical analysis; see, for example, Trefethen (2000), Boyd
(2001), Press et al. (2007) and Kopriva (2009). However, as applied to
flow in porous media, there are very few references to the method; (in
fact, Riaz and Meiburg (2003) is the only application that we have been
able to find.) Unlike finite difference methods, where spatial derivative
operators are replaced by algebraic finite difference approximations,
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spectral methods approximate the global solution to the problem as a
truncated series of analytical functions, most typically Fourier or Che-
byshev series. The analytical spatial solution approximations can then be
differentiated exactly for substitution into the governing flow equations
and boundary conditions.

Whereas finite difference approximations to spatial derivatives al-
ways incur truncation errors that decrease with the grid size to some
power, (squared for second order spatial derivatives) (Abou-Kassem
et al., 2001), spectral approximations are exponentially convergent:
spatial approximation errors decrease exponentially with increases in the
number of terms in the approximating analytical series. In practice, this
means that we can achieve spatial accuracies that far exceed finite dif-
ference accuracies on a given domain with as few as 20–35 terms in the
approximating series. This allows us to examine fracture-matrix inter-
action during reservoir production in detail, and aids in the under-
standing of interference mechanisms. In the following sections, we
provide a detailed description of the 2D spectral gas reservoir simulator
used in this work. We apply it to simulate the hypothetical effects of
fracture interference, and qualitatively compare the obtained results to
actual observed field data.

2. Model development

Our objective is to accurately model flow from ultra-low permeability
reservoir matrix to high permeability, very narrow, long fractures. For
this work, we assume that the fractures are completely penetrating, and
we model the 2D areal region of interest, e.g., the reservoir and half
fracture, as a set of rectangular regions, each of which can exchange
fluids with its immediate neighbors; (see Fig. 1). In the figure, the large
blocks bounding the left and right of the areal region are reservoir matrix
blocks with permeabilities in the nanodarcy range. Some of the narrow
blocks at the center of the area (the lower two center blocks in this case)
are fractures with permeabilities in the hundreds of millidarcy range,
whereas others (the top middle block in this case) could have matrix
properties, with permeabilities in the nanodarcy range. If a specified
pressure (or rate) function were applied at the lower face of the lower
center block, the production behavior of the system would be concep-
tually similar to production through a perforation from a reservoir area
containing half of a single vertical fracture. Complex reservoir-fracture
geometries could be synthesized by interfacing any number of “matrix”
or “fracture” blocks; the only restriction is that common borders of
connected regions must have the same length.

In this paper, we focus on simple 2-D geometries, but 3-D reservoir/
fracture geometries could be built in a similar manner by stacking rect-
angular parallelepiped reservoir regions together. In the simple model
above, the outer “matrix” blocks may have dimensions of tens of feet by
tens of feet, whereas the “fracture” blocks could have dimensions of
hundredths of feet by tens of feet.

2.1. Flow equations

The flow equation for any constituent region “m” in the reservoir,
with corner coordinates ðxm;lo; ym;loÞ,
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where the symbols are defined in the Nomenclature; the units in Eq. (1)
are lbm/d. If region “m” has a neighbor at its left, right, top or bottom, the
boundary conditions at the common boundary are continuity of pressure
and flux if the two regions are in hydraulic communication; thus, if re-
gion “l” is region “m's” left neighbor, these conditions would be

plðxl;hi; y; tÞ ¼ pmðxm;lo; y; tÞ for ym;lo < y< ym;hi (2)
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If there were no left neighbor, (or no hydraulic communication be-
tween the neighbors), the boundary could be sealed, at specified rate or
at specified pressure, i.e.,
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where qðtÞ is the specified rate in Mscf/d, and ρg;sc is the density of the
reservoir gas at standard conditions (lbm/ft3); or

pmðxm;lo; y; tÞ ¼ f ðtÞ for ym;lo < y< ym;hi (6)

respectively. In particular, boundary conditions corresponding to Eqs.
(4)–(6) would apply at the external boundaries of the simulated com-
posite reservoir.

2.2. Spectral approximation

We assume that in each region, the pressure distribution can be
approximated by truncated Chebyshev series; i.e., for region “m”, we
assume that the pressure distribution is given by
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where TjðxÞ is the Chebyshev polynomial of the first kind of order j (Press
et al., 2007) or

TjðxÞ ¼ cos
�
jcos�1ðxÞ� (8)

and cP;m;k;jðtÞ is a set of ðNx;m þ 1Þ � ðNy;m þ 1Þ coefficients that depend
only on time. The number of terms in the truncated Chebyshev series for

Fig. 1. Schematic of reservoir consisting of nine regions.
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