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a b s t r a c t

Conflicting objectives are frequently encountered in most real-world problems. When dealing with
conflicting objectives, decision makers prefer to obtain a range of possible optimal solutions from which
to choose. In theory, methods exists that can produce a range of possible solutions, some of which are
“Pareto Optimal”. The application of these methods to solve bi-objective production optimization pro-
blems is increasing. A recent paper introduced a method to find points on the boundary of the objective
function space by solving a constrained optimization problem using adjoint gradients. In this work, we
investigate the applicability of using ensemble optimization (EnOpt) (which relies on approximate en-
semble gradients instead of exact adjoint-based gradients) to generate points along a “Pareto” front with
acceptable computational effort.. Moreover, we investigate the applicability of this approximate gradient
technique to solve constrained optimization problems using the augmented Lagrangian method. Finally,
we compare the performance of this bi-objective optimization method to a traditional weighted sum
method for bi-objective water flooding optimization of two different synthetic reservoir models. The two
objectives used in this work are, undiscounted (0%) net present value (NPV), representing long-term
targets and highly discounted (25%) NPV, representing short-term operational targets. The controls are
inflow control valve (ICV) settings over time for one model and water injection rate controls for the other.
The effect of different starting points and the computational efficiency of the constrained optimization
method are also investigated.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A majority of studies and applications of life-cycle water
flooding optimization using a model-based approach have focused
on a single objective optimization with emphasis being placed on
the theoretical understanding and practical application of the
optimization methodology. Life-cycle optimization essentially
aims to find a strategy which optimizes long-term reservoir
management targets, but life-cycle optimization is often at the
expense of operationally significant short-term targets. Thus, there
is a need to solve a bi-objective problem to obtain a strategy that
accounts for the two objectives because the long-term perspective
is usually in conflict with the short-term targets which are decided
by operational constraints, contractual obligations etc. Van Essen
et al. (2011) introduced a hierarchical optimization framework to
solve such a multi-objective optimization problem. This was

motivated by the observation in, e.g., Jansen et al. (2009) that the
objective function space consists of many redundant degrees of
freedomwhich can be exploited to optimize a secondary objective.
This hierarchical structure provides a single optimal strategy
which incorporates multiple objectives. However, decision makers
usually prefer to have multiple strategies to choose from, espe-
cially when dealing with conflicting objectives. Isebor and Dur-
lofsky (2014) applied an evolutionary algorithm to generate points
along a “Pareto” front for a bi-objective water flooding problem.
The main pitfall of this approach was the computational effort
required to obtain the points on a Pareto front. Also they did not
compare the front generated with any other method used to
generate Pareto fronts to check if the front obtained was Pareto
optimal. Liu and Reynolds (2014) applied the normal boundary
intersection method (NBI) first introduced in Das and Dennis
(1998) to a bi-objective water flooding problem with and without
geological uncertainty. Liu and Reynolds (2014) showed that the
NBI method is computationally more efficient than the method of
Isebor and Durlofsky (2014) and produces better solutions than
the traditional weighted sum method. The NBI method involves
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solving a series of constrained optimization sub-problems. In Liu
and Reynolds (2014), these constrained optimization problems
were solved using an augmented Lagrangian method using an
adjoint formulation to compute the gradients. The adjoint for-
mulation, an overview of which can be found in Jansen (2011) and
references therein, is a computationally efficient method which
requires access to the simulator source code to implement. Most
commercial simulators either do not have a fully developed ad-
joint code or access to the source code is not permissible. This has
led to an increase in the application of various approximate gra-
dient based techniques which are computationally less efficient
but use the simulator as a black-box, and are more flexible. Do and
Reynolds (2013) provided theoretical connections between various
existing approximate gradient techniques which use an ensemble
of perturbed controls to estimate a gradient. One such approx-
imate gradient technique introduced in Lorentzen et al. (2006) and
thereafter in its current form by Chen et al. (2009) is the ensemble
optimization (EnOpt) method. Recently many studies have used
EnOpt for life-cycle production optimization problems. Fonseca
et al. (2014) applied EnOpt to solve a bi-objective optimization
problem using the hierarchical structure proposed by Van Essen
et al. (2011). Additionally there has been an increase in the num-
ber of applications of different evolutionary algorithms to solve
either a bi-objective optimization problem, Isebor and Durlofsky
(2014) etc., or for history matching applications, as detailed in Liu
and Reynolds (2014). In this work we investigate the applicability
of the EnOpt technique to generate points along a “Pareto” front
with acceptable computational effort. A secondary aim is the ap-
plication of EnOpt to solve constrained optimization problems
using the augmented Lagrangian method. Note that Fonseca et al.
(2014) consider hierarchical optimization (using EnOpt), in which
case an a-priory choice is made which of the two objectives is
most important. Here we consider bi-objective optimization (using
EnOpt) based on the Pareto front approach which provides free-
dom to the decision maker to choose the relative importance of
each of the two objectives, as will be explained in more detail
below.

2. Theory

This section investigates the applicability of the use of ap-
proximate ensemble gradients to calculate points on a Pareto front
for bi-objective production optimization problems.

2.1. Objective functions

We first define the objective functions followed by an overview
of EnOpt. We apply the usual expression for Net Present Value
(NPV) as objective function J:
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where qo k, is the average oil production rate in m3/day for time
step k, qwp k, is the water production rate in m3/day for time step k,
qwi k, is the water injection rate in m3/day for time step k, ro is the
sale price of oil in $/ m3, rwp is the cost of water produced in $/ m3,
rwi is the cost of water injected in $/m3, Δtk is the length of the kth

time step in days, b is the discount factor, tk is the cumulative time
in days corresponding to time step k, and τt is the reference time
period for discounting, typically one year (i.e. 365 days). In this
work the two objective functions are:

– Undiscounted NPV, b¼0.0 (0%) in Eq. (1), representing the long-

term objective (“recovery optimization”).
– Highly discounted NPV, b¼0.25 (25%) in Eq. (1), representing
the short-term objective (“day-to-day production optimization”).

2.2. Ensemble optimization (EnOpt)

In this section, we outline the standard formulation of the
EnOpt algorithm as proposed by Chen et al. (2009). We take u to
be a single control vector containing all the control variables to be
optimized. This vector has N components where N is equal to the
product of the controllable well parameters (number of well set-
tings like bottom hole pressures, rates or valve settings) and the
number of control time steps. Chen et al. (2009) sample the initial
mean control vector from a Gaussian distribution while, at later
iteration steps, the final control vector of the previous iteration is
taken as the mean control. However, the initial controls can also be
chosen by the user, as will be done in our experiments. The vector
of controls is given by,

= [ ⋯ ] ( )u u uu 2i N
T

1 2

where the counter i preempts the use of multiple control vectors,
and where ui is assumed to be a random vector which has a mean
u and covariance matrix C̃, i.e. ui�N(u,C̃). Then an ensemble of M
independent samples of N(u, C̃) are generated as,
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with i¼1, 2, …, M, where zi�N(0,I), i.e., each zi is a vector of in-

dependent standard random normal deviates, and C̃
1/2

is any

square root of C̃. In our examples ˜ =C L
1/2

, where L is the lower
triangular matrix in the Cholesky decomposition of C̃. We truncate
any element of the ensemble of controls outside of the set of
bounds to the bound value. Then, the sample mean is computed as
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To estimate the gradient, a mean-shifted ensemble matrix is
defined as

Δ = [ − ¯ − ¯ ⋯ − ¯ ] ( )U u u u u u u . 5M1 2

Similarly, a mean-shifted objective function vector is defined as
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where the average of the objective function is given by
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In the present paper, we use as the search direction in a stee-
pest ascent algorithm an approximation to the gradient, rather
than the approximation of the smoothed gradient that is used in
standard EnOpt. The approximate gradient is

Δ Δ Δ Δ Δ Δ= ( ) = ( ) ( )Τ Τ† †g U U U j U j, 8

where the superscript † indicates the Moore-Penrose pseudo in-
verse, which is conveniently computed using a singular value
decomposition (SVD); see, e.g., Strang (2006). Do and Reynolds
(2013) demonstrated that it is akin to what is known as a ‘simplex
gradient’, Conn et al. (2009). They also provided theoretical con-
nections between various ensemble methods such as simulta-
neous perturbation stochastic approximation (SPSA), simplex
gradient and EnOpt. Moreover, they proposed a modification to
the gradient formulation which uses the current control vector

ℓu and the corresponding objective function value ℓJ to calculate
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