
Author's Accepted Manuscript

Pressure Pulse-Decay Tests in a Dual-Continuum Medium: Late-Time Behavior

Hui-Hai Liu, Bitao Lai, Jinhong Chen, Daniel Georgi

DOI: http://dx.doi.org/10.1016/j.petrol.2016.06.026

S0920-4105(16)30242-X

Reference: PETROL3517

PII:

To appear in: Journal of Petroleum Science and Engineering

Received date: 20 October 2015 Revised date: 19 May 2016 Accepted date: 13 June 2016

Cite this article as: Hui-Hai Liu, Bitao Lai, Jinhong Chen and Daniel Georgi Pressure Pulse-Decay Tests in a Dual-Continuum Medium: Late-Time Behavior *Journal of Petroleum Science and Engineering* http://dx.doi.org/10.1016/j.petrol.2016.06.026

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Pressure Pulse-Decay Tests in a Dual-Continuum Medium: Late-Time Behavior

Hui-Hai Liu*, Bitao Lai, Jinhong Chen, and Daniel Georgi
Aramco Services Company: Aramco Research Center - Houston
Huston, TX 77084

*Corresponding author. Tel. +1 713 432 4056. Email: huihai.liu@aramcoservices.com

Abstract

The pressure pulse-decay test has been one of the most widely used techniques to measure permeability for low-permeability rocks including shale, largely because relatively simple analytical solutions to fluid flow in a rock sample (characterized as a single continuum) exist for analyzing late-time test data. This work develops a new analytical solution for analyzing late-time pulse-decay test data for dual-continuum rock samples, motivated by the possibility that shale matrix (not including fractures) may exhibit dual- or multiple-continuum gas-flow behavior owing to its wide spread pore size distributions and property differences between organic and inorganic components of the shale matrix. This issue has important implications for characterizing and modeling gas flow in shale, because a dual-continuum medium involves more flow parameters and requires more complex modeling approaches than a single-continuum medium. Our new analytical solution shows that the relationship between gas pressure measurements from a pulse-decay test and permeability remains the same for both single- and dual-continuum systems, suggesting that shale-matrix permeability data in the literature, previously obtained from pulse-decay tests, are valid although the corresponding shale samples

Download English Version:

https://daneshyari.com/en/article/8125680

Download Persian Version:

https://daneshyari.com/article/8125680

<u>Daneshyari.com</u>