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a b s t r a c t

Various numerical models exist for numerical simulation of fluid flow in fractured porous media, such as
dual-porosity model, discrete fracture model and equivalent continuum model. As a promising model,
the embedded discrete fracture model is a powerful tool for fractured porous media with complex
fracture distribution, because it incorporates the effect of each fracture explicitly without requiring the
simulation mesh to conform to the fracture geometry. Moreover, it does not need mesh refinement near
fractures and offers computationally-efficient simulations compared to other discrete fracture models. In
this paper, the Mimetic Finite Difference method and Finite Volume Method are used to improve the
numerical solution of the embedded discrete fracture model, the improved method can deal with per-
meability tensor and can be used to simulate fractured reservoir with complex geometrical shape, which
fails to be solved by the primal method based on the finite difference method. Several numerical si-
mulations and physical experiment demonstrate the applicability of the proposed method for studying
flow processes in fractured porous media.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the past few years, numerical simulation of fractured porous
media has received much attention, because of the significant
contribution of fractured reservoirs to the oil and gas reserves and
productions. The fractures are important for many engineering
practices, such as petroleum engineering, hydrogeology, and so on.
They usually behave as hydraulic conductors, and occur on various
scales (from microcosmic to macroscopic). It is still a challenging
to model multi-phase flow in fractured porous media. Three ap-
proaches are commonly used to model fluid flow in fractured
porous media: (1) the equivalent continuum model (ECM), Huang
et al. (2013), Wu et al. (1999), and Wu and Qin (2009); (2) the
dual-porosity model and its variations, Barenblatt et al. (1960),
Karimi-Fard et al. (2004), Kazemi et al. (1969), Lim and Aziz
(1995); Pruess et al. (1985), Warren et al. (1963), and Wu et al.
(1988); (3) the discrete fracture model (DFM), Geiger-Boschung
et al. (2007), Hoteit and Firoozabadi (2008), Huang et al. (2014),
Karimi-Fard et al. (2003), Martin et al. (2005), Noorishad and
Mehran (1982), and Sun et al. (2014, 2015).

In the equivalent continuum model, fractures and matrix are
represented as a single continuum based on the concept of

equivalent parameters, such as equivalent permeability and por-
osity. The ECM has long been used for modeling flow in naturally
fractured reservoirs due to its simple data requirements and
computational efficiency, Wu et al. (1999) and Wu and Qin (2009).
However, how to accurately and efficiently calculate the equivalent
parameters for multi-phase flow is still a challenge, such as
equivalent relative permeability and capillary pressure, Huang
et al. (2013). In addition, the instantaneous equilibrium assump-
tion for fracture-matrix systems also limits the application of the
ECM approach for modeling general multiphase flow. The dual-
porosity model is typically presented in naturally fractured re-
servoirs because of its simplicity and computational efficiency. In
this model, there are two parallel continua, i.e. the fracture and the
matrix systems, which are connecting with transfer function.
However, how to accurately evaluate the transfer function is still a
challenge, especially for multi-phase flow, Lim and Aziz (1995). By
further subdividing individual matrix blocks, the Multiple Inter-
action Continua (MINC) method, Pruess et al. (1985) and Wu et al.
(1988), has better accuracy and features than the conventional
dual-porosity model. The discrete fracture model, which in-
corporates the effect of individual fractures explicitly, has received
significant attention in the last few years. It provides more realistic
representation of fractured reservoirs than dual-porosity model
and equivalent continuum model. However, it relies on un-
structured meshing, to honor the geometry and location of frac-
tures, which is quite complicated for actual fracture distribution.
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In the last few years, Li and Lee proposed a new discrete frac-
ture model for simulating flow in naturally fractured reservoirs,
called the embedded discrete fracture model (EDFM), Lee et al.
(2001) and Li et al. (2008). In this model, the matrix is represented
by the structured grid, the fractures are explicitly represented by
the discrete fracture network model and embedded in the matrix
grid, then matrix and fractures are connecting with the transfer
function. Therefore, challenges associated with unstructured
gridding are bypassed entirely, Moinfar et al. (2012) and Zhou et al.
(2014). However, the numerical method applied to EDFM is based
on the finite difference method, and it is difficult to simulate fluid
flow in fractured reservoir with complex geometrical shape, which
should be gridding with unstructured grid.

In this work, an efficient EDFM is developed for irregular frac-
tured reservoir with anisotropic permeability based on the Mimetic
Finite Difference method (MFD), Alpak (2010) and Finite Volume
method (FV). The MFD method has been successfully used in
Computational Fluid Dynamics (CFD) and numerical reservoir si-
mulation, Brezzi et al. (2005) and Lipnikov et al. (2014), because of
its excellent local conservation property and applicability for the
complex unstructured grid. The organization of this paper is as
follows: The comparison of geometrical discretization of the DFM
and EDFM is described in Section 2; The equations of the EDFM are
described in Section 3; Then the simulation approach is described
in Section 4 and Section 5. Lastly, several numerical examples and
conclusions are shown in Section 6 and Section 7.

2. Geometrical discretization

The DFM approach requires generating an unstructured grid to
conform to the complexity of the fractures. Generation of such a
grid for an arbitrary fracture network can be a substantial challenge,
especially when the distance between fractures is very short, the
gridding quality is often poor, and it will lead to miscalculation, as
illustrated in Fig. 1a. However, the EDFM uses a structured grid to
represent the matrix and introduces additional fracture control
volumes by computing the intersection of fractures with the matrix
grids, as illustrated in Fig. 1b. Therefore, challenges associated with
unstructured gridding are bypassed entirely.

3. Model equations

To be convenient for writing, we consider the flow of two im-
miscible and incompressible phases (wetting and non-wetting)
without considering the influence of gravity and assume no-flow
boundary conditions in 2-D plane. The flow equations can be
formulated as an elliptic equation for the globe pressure p and the
total Darcy velocity v (the details can be found in Aarnes et al.
(2007)), then, the pressure equations of embedded discrete frac-
ture model are written as:

Matrix system:
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where vi¼viwþvin, the total Darcy velocity, (i¼m, f); Ki is the
permeability tensor; λi¼λiwþλin, denotes the total mobility, and
the mobility of phase is given by λil¼kril/ml, where ml is viscosity of
phase l and kril is the relative permeability; the parameters pi, Vi

and qi are the globe pressure, volume of grid cells and the source,
and qi¼qiwþqin; qmf is the exchange flow between fracture and
matrix; qff is the exchange fluxes between two intersecting frac-
tures; δmf¼1, when matrix grid embedded with fractures, else
δmf¼0; δff¼1, when fracture grid intersects with another fracture,
else δff¼0.

The qmf can be calculated by equation below because of the
assumption of pressure continuity in matrix grids

= − ( − ) ( )q T p p 5mf mf m f

where λ=T k A d/mf mf mf mf ; d denotes the equivalent distance be-
tween matrix grid and fracture grid; kmf is harmonic average of the
permeability of matrix and fracture; Amf is fracture surface area in
the matrix grid; λmf is the total mobility, the upstream value used

Nomenclature

DFM discrete fracture model
EDFM embedded discrete fracture model
PV pore volume
v darcy velocity
K permeability tensor
λ mobility
m fluid viscosity
ρ fluid density
kr relative permeability
p globe pressure
V volume of grids
q source and exchange fluxes term
δ dirac delta function
A surface area or interface
d distance
K permeability scalar
df fracture aperture
S phase saturation
ϕ porosity

pc capillary pressure
fw fractional flow function
n area-weighted normal vector
x coordinate vector
T transmissibility matrix
Ne total number of matrix grids

Subscript

m matrix
f fracture
w wetting phase
n non-wetting phase
d space dimensionality
ξ local coordinates

superscript

in influx
n normalization
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