
Author's Accepted Manuscript

Simplified Surge Pressure Model for Yield Power Law Fluid in Eccentric Annuli

Ming Tang, Ramadan Ahmed, Ruchir Srivastav, Shiming He

PII: S0920-4105(16)30207-8

DOI: http://dx.doi.org/10.1016/j.petrol.2016.05.038

PETROL3481 Reference:

To appear in: Journal of Petroleum Science and Engineering

Received date: 29 March 2016 Revised date: 18 May 2016 Accepted date: 26 May 2016

Cite this article as: Ming Tang, Ramadan Ahmed, Ruchir Srivastav and Shimins He, Simplified Surge Pressure Model for Yield Power Law Fluid in Eccentric Annuli, Journal Petroleum Science and Engineering of http://dx.doi.org/10.1016/j.petrol.2016.05.038

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

Simplified Surge Pressure Model for Yield Power Law Fluid in Eccentric Annuli

Ming Tang^{a,b}, Ramadan Ahmed^{b,1}, Ruchir Srivastav^{b,2}, Shiming He^a

^a State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu,

PR China

^b Mewbourne School of Petroleum and Geological Engineering, University of Oklahoma, OK, USA

Abstract

Axial movement of drillstring during drilling operations causes downhole pressure variations, which are commonly

known as surge and swab pressures. This paper presents a new eccentric annulus surge pressure (EASP) model for yield

power law (YPL) fluid. To develop the model, flow in eccentric annulus was investigated using computational fluid

dynamics (CFD) technique (ANSYS Fluent). CFD simulations were conducted varying fluid rheological parameters,

tripping speed and annular geometry. Simulation results are analyzed considering surge pressure ratio (i.e. ratio of surge

pressure in eccentric annulus to that of concentric annulus) as a parameter for quantifying effect of eccentricity on surge

pressure. Surge pressure ratio (SPR) is found to be very sensitive to fluid behavior index and annular eccentricity and

diameter ratio. In addition to the CFD studies, small-scale laboratory experiments were conducted to validate accuracy of

the EASP model. Results show that the model accurately (i.e. maximum error of ±5%) and conveniently predicts surge

and swab pressures for YPL (Herschel Buckley) fluid in eccentric annulus without requiring complex numerical

procedures. The model is valid for wide ranges of diameter ratio (0.2 \leq K_d \leq 0.8), eccentricity (0 \leq ϵ \leq 0.9) and fluid

behavior index $(0.2 \le n \le 1)$.

Keywords: Herschel Buckley fluid; Surge pressure; Eccentric annuli; Modeling; CFD, Tripping speed

¹ Corresponding author. Tel.: +1(405)325-0745; Fax: +1(405)325-7477. E-mail address: r.ahmed@ou.edu

² Currently with Superior Energy Services

1

Download English Version:

https://daneshyari.com/en/article/8126124

Download Persian Version:

https://daneshyari.com/article/8126124

<u>Daneshyari.com</u>