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a b s t r a c t

This paper introduces a new approach to construct an efficient reduced order model for fluid flow si-
mulation and optimization in porous media. For nonlinear systems, one of the most common metho-
dology used is the proper orthogonal decomposition (POD) combined with discrete empirical inter-
polation method (DEIM) due to its computational efficiency and good approximation. Whereas regular
POD-DEIM approximates the fine scale model with just one single reduced subspace, the localized POD
(LPOD) and localized DEIM (LDEIM) are constructed by computing several local subspaces. Each subspace
characterize a period of solutions in time and all together they not only can approximate the high fidelity
model better, but also can reduce the computational cost of simulation. LPOD and LDEIM use classifi-
cation approach to find these regions in the offline computational phase. After obtaining each class, POD
and DEIM is applied to construct the basis vectors of the reduced subspace. In the online phase, at each
time step, the reduced states and nonlinear functions will be used to find the most representative basis
vectors for POD and DEIM without requiring fine scale information. The advantages of LPOD and LDEIM
are shown in a numerical example of two phase flow in porous media.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Reservoir management enables one to obtain the most favor-
able production scenario given the current information of the re-
servoir, such as reservoir characterization parameters (perme-
ability, porosity) and production data. Very often, one is directed
to computational methods (reservoir simulation) to develop new
techniques or to optimize the existing fields. There are two main
challenges in this realm, the large amount of computational in-
frastructure necessary to perform such calculations; and the fact
that there is no certainty in the range of parameters. In this paper
our primary focus is to tackle the first problem by means of re-
duced order models. Note that the latter issue can be investigated
by uncertainty quantification and parameter estimation.

In many cases, reduced-order modeling techniques have shown
to be a viable way of mitigating computational complexity in si-
mulation of large-scale reservoirs, while maintaining high level of
accuracy. The options range from non-intrusive methods that do
not depend on modifications of a reservoir simulation code (Car-
doso and Durlofsky, 2010; Lerlertpakdee et al., 2014; Ghommem
et al., 2015), to more intrusive and sophisticated methods that
depend on several modifications of legacy code or the develop-
ment of new simulator codes (Heijn et al., 2004; Gildin et al., 2013;
Gildin and Ghasemi, 2014).

POD is one of the efficient intrusive methodology used in
model order reduction context due to its computational simplicity
and good approximation (Van Doren et al., 2004). However,
computational savings are not always attained because in order to
evaluate nonlinear terms, the reduced state needs to be projected
back to fine scale state yielding similar computational cost as the
original system. There are different techniques to alleviate this
problem. One approach is to linearize these nonlinear functions
(trajectories) around several known states and use these piecewise
linear solutions, see Cardoso and Durlofsky (2010). Ghasemi and
Gildin (2015) used quadratic bilinear formulation to reformulate
nonlinear saturation function into bilinear form and then applied
model order reduction. Here, we use discrete empirical inter-
polation method (DEIM), where one constructs another subspace
for reducing the nonlinear function evaluations (Chaturantabut
and Sorensen, 2010).

In reservoir simulation and optimization, POD-DEIM can yield
several orders of magnitude reduction in the size of models and
reduce the computational cost significantly (Ghasemi et al., 2015).
However, if the system exhibits a very dynamic state with a wide
range of changes, many POD and DEIM basis vectors are required
to accurately approximate the states of a system as well as the
nonlinear terms. A remedy to this problem is to search for not just
a single global reduced subspace, but rather multiple local sub-
spaces in time in order to update the bases online, i.e during the
reconstruction of the results under different boundary conditions
by running a reduced order model. Thus, in this work we refer to
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this procedure as localized model order reduction.
In this technique rather than just one single subspace, multiple

local subspaces are constructed for the reduced system. In the
online phase, based on the state of the system at each time step,
the proper subspace that has the best approximation will be se-
lected. By applying the localization technique, the dimension of
the reduced subspace at each time step is decreased more (com-
pared to having a single set of global bases for the entire simula-
tion time) and consequently the computational cost is reduced
even further.

The localization idea was introduced for POD in Amsallem et al.
(2012) and was verified in reducing the pressure state in dyna-
mical equations describing a MEMS switch device. They suggested
using auxiliary quantities to ensure an online selection procedure
is independent of the original system dimension. However, the
number of auxiliary quantities, which are computed in the offline
phase, scales cubically with the number of clusters. This can be an
issue especially in a optimization workflow, whereby one updates
bases of reduced model periodically to obtain more stable and
accurate solution. Following localized POD (LPOD), localized DEIM
(LDEIM) was proposed in Peherstorfer et al. (2014) based on ma-
chine learning techniques and using efficient classification algo-
rithm. They discussed both parameter and state based LDEIM ap-
proaches and applied it to a steady reacting flow simulation.

In this paper, we extend LPOD and LDEIM to reduce the com-
putational cost of porous media fluid flow simulation. We present
a new approach to resolve the existing issues in LPOD by reducing
the number of required auxiliary parameters. Also, an efficient
reduced order model for the fluid transport equation is presented
by applying LDEIM on the nonlinear function of fractional flow.

2. Two-phase flow model

In this section, we summarize the underlying partial differ-
ential equations related to porous media flow simulation. In par-
ticular, we briefly discuss two-phase oil-water systems, see Aarnes
et al. (2009) for more details.

We consider two-phase flow in a reservoir domain under the
assumption that the displacement is dominated by viscous effects;
i.e., we neglect the effects of gravity, compressibility, and capillary
pressure. The two phases are water and oil, and they are assumed
to be immiscible. The Darcy's law for each phase is as follows,
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where vl is the phase velocity, K is the permeability tensor, krl is
the relative permeability to phase l ( =l o w, ), s is the water sa-
turation (we use s instead of sw for simplicity) and p is pressure.
Throughout the paper, we will assume that a single set of relative
permeability curves is used. Combining Darcy's law with con-
servation of mass allows us to express the governing equations in
terms of the so-called pressure and saturation equations as,
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where ϕ is the porosity, λ is the total mobility defined as,
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fw(s) is the fractional flow function,
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and v is the total velocity defined as,
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In this paper, we follow a sequential formulation; at each time
step one solves for pressure and flux first and then use these re-
sults to solve for saturation. We employ mixed finite element
methods (Brezzi and Fortin, 2012) to discretize the pressure
equation in order to use the velocity field and preserve the mass
conservation, see Ghasemi et al. (2015) for more details and ex-
amples. One can write the pressure equation after spatial dis-
cretization of the problem as the following system of equations
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where matrix B and C are derived from FEM discretization and g
results from the sink/source terms, see Appendix A for derivation.

Generally, an implicit time (backward Euler) discretization will
be applied to solve for saturation profile, while a mass con-
servative finite volume is used for the spatial derivative dis-
cretization in saturation equation. Consider a cell Ωi with inter-
faces γij and associated normal vectors nij pointing out of Ωi, the
saturation Eq. (3) will be discretized as,
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where si
k is the cell-average of the water saturation at time tk, and

Fij is the numerical approximation of the flux over interface γij,
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Note that to find ( )f sw ij over each interface, there are different
schemes. It is common to use first order approximation, known as
upwinding method, defined as follows (Aarnes et al., 2009),
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Thus, neglecting capillary pressure and gravity, one can derive the
following differential equation to solve for saturation,
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Note that the pressure and velocity equation in Eq. (7) is a
linear system, whereas the saturation equation in Eq. (11) is
nonlinear system and can be solved for sk by iterative methods
such as Newton-Raphson efficiently. To do so, the residual as a
function of saturation is defined as follows,

( )( ) = − − ( ) + ( )
− +R s s s A v f s q , 13

k k1

and the Jacobian as,
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where ′( )f s is the first derivative of the fractional flow with respect
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