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a b s t r a c t

Obtaining fundamental variables has critical importance in solving engineering problems, and analysis of
experimental data aids more-efficient experimentation. Drag reduction in pipelines is particularly useful
in efforts to reduce energy losses. In the present study, statistical procedures are used to analyze some
drag reduction experimental data to determine the degree to which each variable and its interactions
with the others contribute to drag reduction. The experiments in this study incorporate parameters such
as Reynolds number and temperature of fluid, concentration of different drag reducing agents and re-
lative roughness of pipes. A proposed model has been developed by applying response surface metho-
dology to historical data. The statistical analysis shows that the model is statistically acceptable
(R2¼96.78%). Results of analysis show that 95% of variation in the friction factor can be described only by
Reynolds number and concentration of drag reducing agent and their interactions. Finally for operational
applications, a nomograph has been presented to evaluate friction factor simply.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Adding drag reducing agents (DRAs) to a turbulent fluid flow
greatly decreases friction losses. Accurate determination of prac-
tical friction losses in dilute drag reducing solutions has been
addressed by many researchers. Most studies focus on determin-
ing effective parameters for drag reduction (De Gennes, 1986;
Hamouda and Moshood, 2007; Joseph et al., 1986; Karami and
Mowla, 2012; Lumley, 1969; Mowla and Naderi, 2006; Mysels,
1949; Toms, 1948; Wyatt et al., 2011).

Virk (1975) published a comprehensive study on drag reduc-
tion for water flow and proposed relationships for a fanning fric-
tion factor. He investigated the performance of different polymer
solutions and found a trend to a maximum drag reduction (MDR)
asymptote in all cases.

Based on some experimental data, Karami and Mowla (2013)
obtained a generalized mathematical model for the friction factor
of DRAs in crude oil pipelines. The correlation predicts the drag
reduction under different operating conditions such as tempera-
ture, flow rate, pipe diameter and roughness, as well as different
concentrations of various types of DRAs.

Gallego and Shah (2009) developed a generalized friction

pressure correlation for coiled and straight tubing on the basis of
the energy dissipation of eddies in turbulent flow fields and shear-
rate-dependent relaxation time. They found that their model in
straight tubing correlated better than previous models.

Also, Shah et al. (2006) developed new correlations for pre-
dicting friction factor values as a function of the solvent’s Reynolds
number for both straight and coiled tubing using the data for an
optimum concentration of polymeric fluid.

Based on the elastic properties of polymers, Sher and Hetsroni
(2008) proposed a mechanistic model for turbulent drag reduction
using additives, and compared their results with Virk (1975)
experiments.

Based on the experimental data obtained for different operat-
ing conditions, Mowla and Naderi (2004) proposed a mathema-
tical model for predicting drag reduction by a given polymer for a
two phase flow. Their model could also be used for calculating
friction and maximum drag reduction as a function of DRA
concentration.

As far as we know, there are no statistical analyses of experi-
mental parameters on drag reduction, although these investiga-
tions have the potential to increase the efficiency of experiments.
When several input variables potentially influence important
process specifications, engineering statistics are applied to de-
termine the relations and specifications of the system (Myers et al.,
2009). Design of experiment (DOE) and, particularly, response
surface methodology (RSM) are two main engineering-statistics
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tools (Khuri and Mukhopadhyay, 2010). Using them, it is possible
to design an effective plan of experiments and analysis. But in
recent years the analysis of historical data with RSM has also
proven useful, yielding highly informative results for virtually no
cost (Jeirani et al., 2013a, 2013b). They applied RSM to historical
data for modeling and optimizing the composition and viscosity of
some emulsions (Jeirani et al., 2013b). Salam et al. (2014) also
successfully employed this method for evaluating the bio-corro-
sion rate of steels.

Applying RSM to historical data is particularly useful when data
is abundant, as with the current study. This computer-assisted
method helps evaluate friction factors effectively without complex
calculations. Based on this analysis a new model has been pro-
posed and validated, and shows good agreement with experi-
mental data. The model has also determined the effect of opera-
tional parameters and all their interactions. Based on the para-
meters of most importance, a simple and useful graphical tool has
been developed for practical purposes.

2. Material and Methods

2.1. Experimental data acquisition

To conduct a general analysis of the effect of different para-
meters, the experimental variables and their levels were selected
based on Karami and Mowla article (Karami and Mowla, 2013). In
their general investigation on the drag reduction effect on crude
oil flow, they carried out their experiments for six concentrations
of DRAs (C) in three pipelines with various relative roughnesses
(ε D/ ) under different fluid flowrates (Re). To consider the effect of
temperature, four various operating temperatures were employed
(T). Generally, the resulting database had 648 data points for three
types of drag reducing agents with boiling temperatures of 147.3,
150.8 and 163.2 °C respectively.

To calculate amount of friction factor, they simply measured
pressure difference between two specified points of each pipe and
then converted it to friction factor using Darcy–Weisbach
equation (Karami and Mowla, 2013).

2.2. Semi-empirical model of Karami and Mowla (2013)

Using the experimental data, they developed a mathematical
model to predict amount of friction factor based on the employed
experimental parameters. The general form of their implicit final
equation is as below

( ) ( )ξ ξ= + − − ( )−⎡⎣ ⎤⎦f n f n4/ log Re 0.4/ 2.1 1n1/2 0.75 1 /2 1.2

where n is indicating flow behavior and it is determined experi-
mentally, ξ is slope increment and is defined by Eq. (2)

ξ θ ε= ( ) ( )C D0.0917 / 21.162 1.48 0.276

The dimensionless parameter θ expressed the effect of the
fluid’s temperature and the type of DRA, as defined by Eq. (3)
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where T is the operating temperature, Tb is boiling point of each
DRA and To is reference temperature and here is equal to 100 °C.

Table 1 describes the independent variables and their levels.

2.3. Historical data RSM

When the relationship between a target response and its
parameters is unknown, the function can usually be approximated
by a low-degree polynomial model. RSM is a group of mathema-
tical and statistical techniques used to develop adequate poly-
nomial functional relationships.

Due to the desirable properties of second order polynomials,
such as high predictability, robustness and simplicity, these func-
tions often are used for estimating response value and determin-
ing the size of effects. The general form of this function is as below
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where y is the purposed response; λ (lambda value) is the Box–Cox
power transformation value; β0 is a real constant of regression; βi,
βj, βij and βii values are regression coefficients of the main, inter-
action and quadratic terms; and xi values are the ith independent
variables of the function. Finally, ε value shows random error. In
the present study, using design expert software

s

(Trail Ver-
sion8.0.6., Stat-Ease Inc., Minneapolis, MN), the above equation
was obtained and all the associated calculations were accom-
plished. The backward elimination strategy was used to modify
the model structure and remove inessential mathematical ex-
pressions. However there are enough data to allow the software to
determine higher polynomials (such as six order), but a quadratic
model is used to compact the equation, because of its simplicity
and desirable properties as discussed above. Also comparing lin-
ear, quadratic and cubic models suggests that a quadratic model is
a better predictor (Table 2). Based on the software results, the
cubic model was aliased and made distorted or inaccurate pre-
dictions. However the results of cubic model are slightly better,
but the suggested model is selected by some indices which are
applied by the software. They could be found in the help of the
software.

After obtaining an enhanced model using backward elimina-
tion, the response can be transformed. A common transformation
of responses is the Box–Cox transformation: a general power
transformation (Osborne, 2010). To select the correct power law
transformation, a Box–Cox Plot provided to determine which form
of transformation is both required and acceptable.

2.4. Performance identification of model

After drafting the model, determining its structure and apply-
ing all the modifications, it is important to validate the model and
employ it to consider system characteristics. This section presents

Table 1
The applied experimental parameters and their levels by Karami and Mowla (2013).

Variable notation Short description Levels

1 2 3 4 5 6

Re Reynolds number 19 levels (from 2577.09 to 20427.26)
ε D/ Relative roughness 0.001811 0.00598 0.011968 – – –

θ Dimensionless temperature 12 levels (from 0.49 to 1.07)
C Drag reduction agent concentration (ppm) 25 50 75 100 150 200
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