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a b s t r a c t

Thief zone which evolves from long-term water flooding, has become a subject of concern for reservoir
engineers, as they lead to early water breakthrough in oil producers and uneven sweep around water
injectors, thus it is essential to select wells which need to be modified injection or production profiles.
This article presents a methodology of determining the levels and parameters of thief zone in different
areas of the reservoir on the concept of “based on the information from every grid of reservoir model” by
using automatic history matching and fuzzy method. Since characterizing the reservoir uncertainty is
crucial to the reservoir description and future performance predictions, automatic history matching
using ensemble Kalman filter (EnKF) with covariance localization is first proposed. Then according to
theory of logical analysis (TLA), fuzzy analytic hierarchy process (FAHP) and Fuzzy comprehensive eva-
luation (FCE) method, the system to quantitative evaluation of thief zone is presented, and the reservoir
can be graded into three categories of severe thief zone, light thief zone and no thief zone. The meth-
odology has been applied to X oilfield in western North China which has 17 layers from the top to the
bottom in the stratigraphy, and the results show that 5 layers exist severe thief zones and the volume of
severe thief zones is the largest in layer 32, and there are four wells in this layer that their injection or
production profiles must be modified. In addition, the interwell tracer test result shows the proposed
methodology is more accurate by comparing with other methods in the references which mainly rely on
the properties of single well to determine the levels of thief zone. The proposed approach is more ac-
curate and less manpower needs to identify thief zones, which also providing a strong basis for oilfield
development adjustment in high water cut stage.

& 2015 Published by Elsevier B.V.

1. Introduction

During long period of water injection, sand production and clay
erosion will contribute to the variation of formation structure,
which may lead to the widespread formation of thief zones (Bane
et al., 1994; Feng et al., 2010, 2011). This phenomenon has serious
effect on oilfield development since injected water would circulate
inefficiently and sweep out of the reservoir rapidly. Therefore, how
to identify and characterize these thief zones effectively and which
wells should be modified profile, have been increasingly attracting
reservoir engineers’ attention.

There are several approaches to detect and characterize the
thief zone which involve interwell surveillance (Asadi, 2005), core
analysis (Al-Dhafeeri and Nasr-El-Din, 2007; Li et al., 2007), well
logging (Li et al., 2008), inverse modeling of geology (Vargas-
Guzmán et al., 2009), well testing (Feng et al., 2010) and reservoir

engineering method (Feng et al., 2013; Parekh and Kabir, 2013).
Although these ways can calculate the specific parameters of thief
zones, it is always time-consuming and expensive, and they can
not determine the level of the thief zone. Wang and Jiang (2010)
first presented a set of index system which is suitable for profile
control and water shut-off, then used ISODATA clustering analysis
method to determine the existence of thief zone and levels of thief
zone in different wells. However, this method mainly relies on the
properties of single well which can only describe the situation
near the wellbore, and it can not characterize the interwell in-
formation. In addition, the selection of the evaluation index is too
artificial to lack of corresponding selecting system or method.
More importantly, geological uncertainty is not taken into account
during the evaluation process.

In fact, proper characterization of the reservoir and the as-
sessment of uncertainty are crucial aspects of any optimal re-
servoir development plan and management strategy. History
matching is a proper way to achieve this goal. Recently, ensemble
Kalman filter (EnKF) is a new and most widely used method of
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automatic history matching because of its advantage. However, for
reservoir developed with high permeability channels, it is neces-
sary to implement the EnKF with covariance localization (LcEnKF)
(Arroyo et al., 2008).

The objective of this article here is to present a concept of
“based on the information from every grid of reservoir model” by
extracting information of static geological data and production
dynamic data from reservoir numerical simulation model after
automatic history matching, then use these information to quan-
titatively evaluate the thief zone by the system established by
theory of logical analysis (TLA), fuzzy analytic hierarchy process
(FAHP) and fuzzy comprehensive evaluation (FCE) method. The
main feature of this methodology is that it can identify the spatial
distribution of thief zones in a reservoir including the near-well-
bore and interwell areas, and also take the geological uncertainty
into deliberation.

2. Automatic history matching using LcEnKF

Before the comprehensive evaluation of thief zone is per-
formed, the evaluation parameters need to be obtained first. Base
on the concept of “based on the information from every grid of
reservoir model”, the information of static geological data and
production dynamic data is extracted from reservoir numerical
simulation model. So it is necessary to reconcile geological models
to the dynamic response of the reservoir through history
matching.

Recently EnKF has gained increasing attention for history
matching and continuous reservoir model updating. As EnKF
generates multiple history-matched models, it conceptually allows
one to characterize the uncertainty in reservoir description and
future performance predictions. However, an important deficiency
of EnKF is the inaccurate estimation of covariance matrices. Arroyo
et al. (2008) proposed a novel approach to overcome this limita-
tion by conditioning the cross-covariance matrix using informa-
tion gleaned from streamline trajectories. So here we use the
LcEnKF for automatic history matching.

2.1. Standard EnKF formulation

The standard EnKF formulation is a sequential data assimilation
algorithmwhich was introduced by Evensen (1994). To present the
EnKF equations, the ensemble Ψ can be expressed as

⎡⎣ ⎤⎦y y 1k k k N
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where kΨ is the N Ny e× ensemble matrix, and yk N, e
is the Ne th

ensemble member of state vector at time k.
State variables for each simulation model form a state vector

and the ensemble of state variables forms an ensemble matrix.
Thus, we have
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where yk N, e
is the Ne th ensemble member of state vector at time k.

mk N, e is the N Nm e× static vectors, and pk N, e
is the N Np e× dynamic

vectors, and dk N, e is N Nd e× production data vector.
Here, we define the matrix H by
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where H is N Nd y× matrix, and O is the N N Nd y d× ( − ) null matrix,
and Id is the N Nd d× identity matrix. Note that the dimension of H
depends on the number of data to be assimilated at the kth as-
similation step so that we can write the forecast or predicted data
vector, dk i, , as
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The ensemble of sampled observations Dk can be represented
as follows
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where dk represents a vector of production data measured at time
k, perturbed by the data noise iε assumed to be Gaussian and
uncorrelated in time, and i N1, , e= ⋯ .

The EnKF update equation is
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where the superscript u denotes updated and p denotes prior, and
K is the Kalman gain, and C p

Ψ represents the state vector covariance
matrix and CD represents the observation covariance matrix.

2.2. EnKF assisted by streamline (LcEnKF)

The standard EnKF formulation use one sensitivity matrix for
all ensembles, even though all ensembles have different static
parameters. But reservoir permeability with thief zone usually
follows a bimodal distribution, if we utilize the same sensitivity
matrix for the whole reservoir, it affects the result of history
matching (Jafarpour and McLaughlin, 2009). Therefore, history
matching dynamic production data using EnKF with covariance
localization which calculates the cross-covariance matrix using
information gleaned from streamline trajectories is proposed. That
means the cross-covariance calculations that relate reservoir
parameters to production data are limited to the regions identified
by streamlines.

To account for the conditioning using streamline, the only thing
is to redefine the covariance matrix as (Arroyo et al., 2008)
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where ρ is a correlation function discussed below and represents
the flow path information extracted from the streamlines. The
operation ρ° in Eq. (10) denotes the Schur product operator.

We can think of the correlation function ρ as a matrix with the
column j filled with ones at the grid locations i selected by
streamlines. For other grid blocks in the same column the corre-
lation function is set equal to zero. A similar procedure is repeated
for all other producers j until matrix ijρ is completed. We can build
the correlation function at each assimilation time. In fact, it is
possible to define different types of the correlation functions de-
pending upon physical considerations.
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