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a b s t r a c t

Pressure transient behavior is among the most important information for characterizing a reservoir,
forecasting its future performance, and designing an appropriate recovery scheme. Although a con-
tinuous real-time monitoring of reservoir bottom-hole pressure has become a routine task in intelligent
wells, complete extraction of the potential information from these valuable sources of data may not be
achieved by using traditional interpretation methods. Deconvolution transforms the pressure transient
data related to the wells with variable production rates into an equivalent constant rate pressure data
with duration equal to the whole duration of the multi-rate test i.e., unit step response. This technique
can reveal high valuable information over a distance from the wellbore which may be several orders of
magnitude greater than the radius of investigation of individual flow periods. In the present study, a
robust and practical deconvolution methodology is developed for extracting the unit step response (USR)
from synthetic, noisy and incomplete pressure transient histories pertaining to multi-rate data. Our
proposed scheme calculates the USR from those multi-rate well testing data which may contain high
levels of noises in both the flow rate and pressure data. A coupled wavelet transform/superposition
theorem is the basis of the proposed method. The algorithm has shown an excellent performance for
revealing reservoir/boundary models and their associated parameters.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Descripting dynamic behaviors of underneath formations con-
taining crude oil, gas and water is of great importance in the
petroleum engineering. Success of a hydrocarbon reservoir simu-
lation for evaluating its current and future behavior depends
heavily on the accuracy of the reservoir characteristic parameters.
There are several possible ways to obtain some valuable in-
formation about the reservoir characteristics: seismic data (Arora
and Tomar, 2010), well log data (Dashtian et al., 2011), well drilling
data (Shahverdi et al., 2011), and transient pressure testing
(Braester and Zeitoun, 1993; Vaferi et al., 2011, 2012, 2015).

Although a consistent and complete characterization of a hy-
drocarbon reservoir can only be realized through collecting and
analyzing all of these different sources of data, the method with
dynamic nature can represent dynamic behavior of a hydrocarbon
reservoir more accurately. Well testing operations which are ba-
sically conducted by creating a pair of flow disturbances in the
wellbore and monitoring their associated pressure response at the

bottom of the wellbore is a well-known and widely used dynamic
technique for hydrocarbon reservoirs (Vaferi et al., 2011, 2015).
Alteration of production conditions creates sequences of pressure
transient signals that can sense a large portion of a reservoir
structure progressively (Vaferi et al., 2012). The reservoir proper-
ties are usually estimated by appropriate well-test methods which
try to match the observed pressure responses on some ideal re-
servoir models. Since propagation of the pressure signal through
the reservoir structure can represent the average reservoir con-
ditions rather than its local heterogeneities in properties, these
types of signals are the most effective sources of information for
estimating and predicting the dynamic behavior of the hydro-
carbon reservoirs. In fact, well testing analysis enables us to es-
tablish the reservoir/boundaries models as well as their associated
parameters through an inverse solution and history matching
(Vaferi et al., 2011, 2015).

Allain and Horne (1990) employed a combined artificial in-
telligence technique with a rule-based pattern recognition scheme
to identify the key characteristics of some de-noised pressure
derivative (PD) plots. Athichanagorn and Horne (1995) focused on
the reservoir models detection using a coupled scheme based on
sequential predictive probability method and a multi-layer per-
ceptron neural network (MLPNN). Their MLPNN model was
trained to detect the key features of the PD graphs of some
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candidate reservoir models. The initial guess for the sequential
predictive probability method were obtained from the trained
MLPNN approach. May and Dagli (1998) provided a hybrid system
for analyzing the well testing data. The authors highlighted the
low running time and possibility of using both symbolic and nu-
meric data as two key features of their developed hybrid method.

Vaferi et al. (2011) designed an optimal MLPNN approach for
identification of various oil reservoir models with different
boundaries, and applied it to both synthetic and real field well-
testing data. They approved the performance of their proposed
approach against noisy data by applying it to several noisy well
testing data.

The above-mentioned research studies have only been con-
centrated on the constant rate well testing operation, and no
multi-rate test data have been considered in these studies (Allain
and Horne, 1990; Athichanagorn and Horne, 1995; May and Dagli,
1998; Vaferi et al., 2011). In these studies only those constant rate
tests have been analyzed which their radius of investigation reach
the reservoir boundary. Since the PD can only be calculated from a
constant rate test, the constant rate duration in these studies are
up to 400 days (Allain and Horne, 1990; Athichanagorn and Horne,
1995; May and Dagli, 1998; Vaferi et al., 2011). The pressure de-
rivative analysis over constant rate periods (traditional method)
have several drawbacks such as it only covers a limited volume of
reservoir, reveals restricted reservoir information, and sometimes
provides an uncertain diagnosis for reservoir model (Du, 2007).

van Everdingen and Hurst (1949) were the first researchers
who employed the superposition theorem (Duhamel principle) to
drive a dimensionless wellbore pressure drop solution for a con-
tinuously varying production rate. Hutchison and Sikora (1959),

Coats et al. (1964), Jargon and van Poollen (1965), Stewart et al.
(1983), Kucuk and Ayestaran (1985), Thompson and Reynolds
(1986), Ahn and Horne (2008), von Schroeter et al. (2004), and
Levitan et al. (2006) are other research groups who have in-
vestigated some other applications of the Duhamel principle in the
field of petroleum engineering.

Stewart et al. (1983) introduced the flow rate data as a piece-
wise linear function into the convolution process for radial flow in
homogeneous reservoirs. However this approach did not yield
much advantage since the success of representation of flow rate
signals by stepwise functions depends on data quality (Stewart
et al., 1983).

Kucuk and Ayestaran (1985) used an exponential and poly-
nomial function for approximation of flow rate and pressure signal
of multi-rate well testing data, respectively. Solution of the de-
convolution integral in the Laplace domain shows serious pro-
blems in handling of noisy data, and provides unstable results in
these situations (Kucuk and Ayestaran, 1985).

Thompson and Reynolds (1986) employed the piecewise linear
function to approximate both flow and pressure data, and carried
out the calculation of the deconvolution integral in the time do-
main. Although this real-time deconvolution algorithm presents a
general solution for multi-rate well testing analysis, but its cal-
culations is very complex, time consuming, and involves a com-
plicated recurrence relation with severe numerical difficulties
(Thompson and Reynolds, 1986).

Ahn and Horne (2008) solved a deconvolution problem using
convex optimization approaches in the presence of noises in both
pressure and flow rate data. This method shows severe problem
for handling an incomplete buildup transient especially when the

Nomenclature

Bo oil formation factor
c compressibility
Ei exponential integral function
Fcd dimensionless fracture conductivity
g t( ) impulse response
hL formation thickness
h t( ) unit step response
hp perforated interval
htop distance from top of layer to top of perforations
k permeability
kz vertical permeability
m t( ) independent random variable of Eq. (24)
N number of recorded pressure data
p pressure
p0 initial pressure
q flow rate
qo time derivative of the flow rate
r radius
rb boundary radius
S skin factor
Sf fracture face skin
s t( ) noisy signal
s t( ) de-noised signal
t time
tp production time
W orthogonal N�N matrix
ws wellbore storage
Xf fracture half length
Z vector of the wavelet coefficients
zi wavelet coefficients

Subscripts

f fracture
m matrix
t total
w wellbore

Abbreviations

BU build-up
CPR constant production rate
DD drawdown
EMD empirical mode decomposition
MLPNN multi-layer perceptron neural networks
PD pressure derivative
PDE partial differential equation
STB standard tank barrel
USR unit step response
WT wavelet transform

Greek symbols

∂ partial differentiation
α diffusivity coefficient
Δ difference
ϕ porosity
λ interporosity flow coefficient
μ viscosity
σ noise variance
ω storativity ratio
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