

Contents lists available at ScienceDirect

Journal of Petroleum Science and Engineering

journal homepage: www.elsevier.com/locate/petrol

On the filtrate drilling fluid formation and near well-bore damage along the petroleum well

Hamidréza Ramézani ^{a,*}, Rezki Akkal ^{b,**}, Nathalie Cohaut ^{c,1}, Mohamed Khodja ^{d,2}, Toudert Ahmed-Zaid ^{b,3}, Faïza Bergaya ^{c,4}

^a École Polytechnique de l'Université d'Orléans, Université d'Orléans, ICMN, UMR CNRS 7374, Interfaces, Confinement, Matériaux et Nanostructures, 8 rue Léonrad de Vinci, 45072 Orléans, France

^b Laboratoire de Valorisation des Énergies Fossiles, École Nationale Polytechnique, Departement de Génie Chimique, 10 Avenue Hassen Badi BP 182 el harrach Alger, Algeria

^c Université d'Orléans, ICMN, UMR CNRS 7374, Interfaces, Confinement, Matériaux et Nanostructures, 1b rue de la Férollerie, 45071 Orléans cedex 2, France ^d Sonatrach/Activité Amont-Division Technologies et Développement, Avenue du 1^{er} Novembre, 35000 Boumerdes, Algeria

ARTICLE INFO

Article history: Received 2 August 2013 Received in revised form 20 April 2015 Accepted 14 September 2015 Available online 24 September 2015

Keywords: Mud fluid flow Binghamian fluids Well-bore modeling Damage ratio Numerical modeling

1. Introduction

1.1. Overall review on the filtrate drilling and wellbore damage

To achieve oil well drilling, several equipments should be taken into account. As illustrated in Fig. 1(a), these equipments are essentially represented by a swivel, a stalk of training and a train of stalk which is connected at the end of the train by a drill bit (Lummus and Azar, 2008). As the hole gets deeper, the pipes are added to the drill bit to allow it to dig further. These lengths of drill pipe form the drill string. During the drilling process, the drilling fluid is steadily injected. This fluid is prepared in mud pits and then it is injected into the stalk until the drill bit where it goes in

* Corresponding author. Fax: +33 2 38 255376.

** Corresponding author. Fax: +213 21 52 29 73.

http://dx.doi.org/10.1016/j.petrol.2015.09.022 0920-4105/© 2015 Elsevier B.V. All rights reserved.

ABSTRACT

In the present paper, the modeling of the filtrate drilling fluid as long as near well-bore damage has been taken into account. The damage experiments have been achieved to assess the initial/final permeabilities and fluid flow rate as well as damage ratio. Some drilling Binghamian fluid formulations which have been painstakingly prepared at laboratory (Akkal et al., 2013), are applied into the numerical modelings to examine and choose the optimized drilling fluids. The coupled diffusion–advection and Forchheimer's equations are used for all numerical experiments including/excluding the inertia effects for both static and dynamic cases (Civan, 2007). The cake formation thickness and filtrate fluid invasion through various samples have been investigated.

© 2015 Elsevier B.V. All rights reserved.

charge of debris formed in the bottom hole (Fig. 1(a)).

As shown in Fig. 1(b), the drilling fluid must be recycled before next injection. To perform this matter, the fluid must undergo different treatments, e.g. screening and adding product, to rematch its initial physiochemical characteristics and to ensure the same functionalities. These functionalities can be summarized as the cuttings removal, keeping at the dispersion state, holding the external layer of the oil wells at the stable conditions and controlling the formation fluids entering to the oil well (Darley and Gray, 1988; Civan, 2007; Caenn et al., 2011). To pursue the abovementioned conditions, various types of drilling fluids can be used according to the continuous phase, i.e. Oil Based Mud (OBM), Water Based Muds (WBM) and Foam/Gas Mud (FGM).⁵

The choice of a fluid type depends closely on the drilled formations, depth and well pressure. These fluids often contain two phases, i.e. oily and aqueous phases. These two phases will be stabilized by means of the surfactants and organoclays (OC). The

E-mail addresses: hamidreza.ramezani@univ-orleans.fr (H. Ramézani), rezkidzmin@yahoo.fr (R. Akkal), nathalie.cohaut@univ-orleans.fr (N. Cohaut), mohamed.khodja@ep.sonatrach.dz (M. Khodja),

toudert@hotmail.com (T. Ahmed-Zaid), f.bergaya@cnrs-orleans.fr (F. Bergaya).

¹ Fax: +33 2 38 255376.

² Fax: +213 24 81 85 57.

³ Fax: +213 21 52 29 73. ⁴ Fax: +33 2 38 255376.

Tdx. + 55 2 58 255570.

⁵ The Oil Based Muds (OBM) are the inverse emulsions, whereas the Water Based Muds (WBM) are mainly dispersions. The latter mud case, i.e. Foam/Gas Mud (FGM), has the dispersed phase in a gaseous form. More detail about the abovementioned drilling fluids can be found out and addressed in Patel et al. (2007) and Khodja et al. (2010a).

Nomenclature (Pa s			(Pa sm ² /kg)
Constants		c(x, t) c_p	filtrate concentration (kg/m ³) particle mass per unit volume contained in the mud
β	inertial flow coefficient (1/m)	D	(kg/m^2)
B _F	cake inertial flow coefficient (1/m)	D	coefficient of dispersion (m/s)
$\beta_{R_{\alpha}}$	cake inertial flow coefficient (1/m)	D_0	molecular diffusion coefficient ($\frac{11}{5}$)
	filtrate viscosity (Pa s)	D_e	coefficient of convective dispersion (m/s)
	fluid filtrate density (kg/m^3)	D_L	coefficient of molecular dispersion (m^2/s)
م ع	Baker's velocity exponent coefficient (–)	D_m	coefficient of molecular dispersion (m ⁻ /s)
ĸ	permeability (m^2)	a_p	particle diameter (m)
K'	consistency constant $(kg/m/s^{(2+n')})$	D_i	depth of invasion (iii)
k.	cake permeability (m^2)	DIS	dispersivity (III)
k -	deposition rate coefficient (1/m)	r c	IOFMATION ELECTRICAL RESISTIVITY FACTOR (-)
ka ka	erosion rate coefficient (s/m)	J	empirical coefficient for the convective diffusion
k.	filter fluid permeability (m^2)	~	coefficient D_e (III ² ⁵ /S ⁶ ⁵)
L	sample length (m)	g	fusion coefficient D (
Le	filter length (m)	h	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$
V _n	plastic viscosity in the Bingham plastic model (Pa s)	Γl 1.	reservoir thickness (iii) Delverte dispersion coefficient ($m^2(c)$)
x	Distance (m)	K 1.	Baker's dispersion coefficient (m/s)
Y	vield value in the Bingham plastic model (Pa)	К ₁ 1.	transverse dispersion coefficient (m^2/c)
n'	flow index (constant)	κ _t	velocity exponent (
		n_v	fuid processing $(lrg/m/c^2)$
Used abbreviations		p	$\frac{1}{2} \frac{1}{2} \frac{1}$
05cu u	bbreviations	P_c	filter outlot side back processive $(kg/m/s^2)$
חח	damaga ratio	p_e	side surfaces pressure $(lg/m/s^2)$
	organoclay(c)	p_w	flow rate carrying the fluid that invaded the recorrying
	organociay(s)	ų	formation (m^3/s)
Scalar quantities		q_0	initial fluid flow (m ³ /s)
		R_{ps}	net mass rate of deposition of particles of the slurry to
ϕ_c	cake porosity (m ³ /m ³)		form the cake (kg/m ² /s)
ρ_p	particle density (kg/m ³)	S_{Or}	residual oil saturation (m ³ /m ³)
τ	tortuosity (–)	S_{Wi}	irreducible water saturation (m ³ /m ³)
$ au_{cr}$	minimal critical shear stress required to detach par-	t	time (s)
	ticles from the surface of cake (kg/m/s ²)	U	average interstitial velocity (m/s)
$ au_s$	shear stress applied by the mud on the surface of the	u_c	volumetric filtration flux (m/s)
	cake (kg/m/s ²)	χ_c	thickness of the cake (m)
ã	first equation coefficient for flow rate q (kg/m ⁷)		
$\tilde{\beta}$	second equation coefficient for flow rate $q (kg/m^4/s)$	Vector quantities	
γ	third equation coefficient for flow rate q (kg/m/s ²)		
ε_s	volume fraction of particles of the cake (m^3/m^3)	α_D	basic dispersivity (m)
A	first equation coefficient for cake formation $(1/m)$	v	mud tangential velocity (m/s)
а	cross sectional area (m ²)	V_e	interstitial velocity in porous media (m/s)
В	second equation coefficient for cake formation		

latter fluids are also non-Newtonian fluids and they can be described via the thixotropic shear-thinning including the yield stress (Dolz et al., 2007; Hamed and Belhadri, 2009; Gonzalez et al., 2011). These drilling fluids circulate in the oil well with high pressure greater than the fluid reservoir in order to avoid the penetration of the fluids from reservoir into the well. Hence, the high pressure will allow the solid particles and the fluid filtrate to invade the non-damaged zone or so-called pay zone around the well and consequently, it sustains the damage formation (Civan, 2007) (Fig. 1(c)). During the invasion of drilling fluid through the reservoir rock, the filtrate fluid will mix and push forward the fluid reservoir. This will induce a damaged zone around the well. It is straightforward to emphasize that the well-bore damage deals with the drastic drop of permeability, whose effect can be seen as the oil productivity loss. The degree of damage depends on several factors such as the characteristics of the drilling fluids, the proprieties of heterogeneous formation and the pressure conditions (Ding et al., 2004; Gentzis et al., 2009; Khodja et al., 2010b;

Bennion et al., 1996).

The above-indicated invasion increases the water saturation of the damaged formation during the exposure area period. Therefore, the oil saturation in this area will decrease, which will reduce the oil effective permeability and causes a severe decrease in the annual productivity of oil wells (Bennion et al., 1996; Civan, 2007; Iscan et al., 2007; Cai et al., 2010). Thus, the evaluation of the formation damage, its control and its remediation appear among the tough questions required to be solved to ensure the efficient oil exploitation.⁶ A smart simulation model of the damage associated with the laboratory experiments can be utilized as a benchmark guide to prevent and weaken the damage formation.

⁶ It is of great importance to mention that the experiments last one day and it nearly costs 3000\$ per sample. Moreover, the experimental procedure conducts the destructive tests. Therefore, the analytical and numerical modeling of the reservoir rock drastic drop during the drilling action is extremely essential in understanding of the damage phenomenon and its impact on the oil productivity later on.

Download English Version:

https://daneshyari.com/en/article/8126388

Download Persian Version:

https://daneshyari.com/article/8126388

Daneshyari.com