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a b s t r a c t

The problem about theoretic modeling incipient stage of a drill string (DS) buckling in a curvilinear
channel of a deep directed bore-hole is stated. On the basis of the theory of curvilinear flexible rods, non-
linear differential equations describing elastic bending of the DS inside the bore-hole cavity are deduced.
The effects of the DS curvature, its axial non-uniform prestressing, action of torque, and interaction
between the DS and the bore-hole surface are taken into consideration. Owing to the use of curvilinear
coordinates in the constraining channel surface and a specially chosen concomitant reference frame, it
became possible to separate the desired variables and to reduce the total order of the equations system.
With the aim to analyze critical states of the DS equilibrium and to construct modes of its stability loss,
these equations are linearized in the vicinity of the considered state and eigen-value problem is
formulated. Techniques for its numerical solution are proposed. Via its use the critical loads and shapes
of buckling DSs are found for their different locations inside the bore-hole with circular trajectory. It is
shown that the buckling proceeds with generation of irregular harmonic wavelets localized inside the
well or in the neighborhood of its boundaries. Influence of boundary conditions, torque, clearance value,
and channel axis curvature on the buckling process is analyzed. The presented results illustrate the
applicability of the method proposed for the regimes of drilling and the drill string lowering and raising.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

At the present time, in politics, business, and oil-gas industry,
the sharp-plotted scenarios connected with extraction and redis-
tribution of hydrocarbon fuels are played. Additional freshness is
contributed into this atmosphere by “shale revolution” broken out
owing to development of new technologies of curvilinear bore-
hole drilling. Inasmuch as the inclined and horizontal bore-holes
penetrate the oil- and gas-bearing strata along the laminated
structure of the underground deposits, they cover larger zones of
fuel output and are effective expedients to enlarge the extraction
efficiency (Brett et al., 1989; Aadnoy and Andersen, 2001; Choe et
al., 2005; Sawaryn et al., 2006). By way of example, as early as 10
years ago, only one-third of the hydrocarbon fuels contained in the
oil layer could be extracted. Now, the modern technologies make it
possible to enlarge this index to 70%. In addition to that, the
deposits hitherto considered economically unprofitable became
successful owing to the new means of drilling.

The most ill effects associated with buckling the DS inside
curvilinear bore-holes consist in deterioration of conditions of

DS – bore-hole interaction leading to essential enlargement of
friction forces, resulting the impossibility to transfer the required
axial force to the bit and the DS lock-up situation. Therefore, the
problems on theoretical simulation of the phenomena of critical
and post-critical buckling of DSs in vertical and curvilinear bore-
holes are the issues of current importance. In spite of the semi-
centennial history, beginning from their first analysis in vertical
wells by Lubinski et al. (1962) till now and paper by Dawson and
Paslay (1984), dedicated to DS buckling in inclined bore-holes,
they are far from completion. Detailed analysis of their state is
presented by Cunha (2004), Mitchell (2008) and Mitchell and
Samuel (2009). It follows from these reviews that, mainly, the
approaches used by researchers attacking this problem were
based on the buckling mode approximation by sinusoidal or
helical curves (as Euler did in 1744). Nevertheless, Cunha (2004):
“One important point noted in this literature review is that
different authors have presented what could be seen as conflict-
ing results for critical forces of buckling”.

Mitchell (2008) emphasizes: “The original buckling analysis by
Lubinski et al. (1962) has inspired 4 (now 5; authors) decades of
work to understand the many aspects of tubing buckling. More
than 40 (now 50; authors) years later, we find that there are still
challenging problems to solve and difficult questions to answer”.
Some of them include
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(1) What is the critical buckling load in curved, 3D bore-holes?
(2) How does torque affect the critical buckling load?
(3) What is the buckling mode in them?
(4) What effect does friction play in DS buckling?
(5) How do the boundary conditions affect the buckling process?

Not in vain, Mitchell (2008) titled his paper: “Tubing Buckling –

The State of the Art”.

2. Basic concepts of the DS bending in its buckling

Thus, further, we again shall try to demonstrate the importance
of understanding the peculiarities of the DS buckling behavior
inside a bore-hole and to answer the posed questions.

First of all, a deep DS is similar to human hair by conditions of
their geometry and bending stiffness similarity. Then, for the sake
of simplicity, consider the DS equilibrium under action of gravity
forces, weight on bit and torque in vertical bore-hole. The effects
of the DS rotation and mud motion are not taken into account. In
this case, its critical states are described by equations (Gulyayev
et al., 2009):
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Here, uðzÞ and vðzÞ are the lateral displacements of the DS; z is the
coordinate directed along the DS axis; EI is the bending stiffness;
TðzÞ is the axial force combined by action of distributed gravity
forces and weight on bit, compressing the DS at its lower end; Mz

is the torque.
If length L of the DS is large, then the problem determined by

Eq. (1) belongs to the so called class of singularly perturbed
problems. In Chang and Howes (1984), a problem is referred to
this class if the coefficients before the senior derivatives in its
equations are small. In our case, coefficients EI are implicitly small.
Indeed, let, for example, L¼ 10;000 m. With the use of substitu-
tion z¼ 10;000Z, change the scale of the z coordinate and transfer
from Eq. (1) in domain 0rzr10;000 to equations
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in domain 0rzr1.
It can be supposed after these transformations that the first

terms in Eq. (2) should be cast away, because they are very small.
Then, the transformed equations acquire absolutely another struc-
ture
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and they become valid only for simulation of absolutely flexible
strings. But flexible strings do not buckle. Therefore, if one is
analyzing buckling of very long DS, he must not neglect the first
terms in either Eq. (2) or Eq. (1), notwithstanding the fact that they
are singularly perturbed.

As was demonstrated by Prandtl in the theory of hydrodynamic
and aerodynamic flows past a body, the peculiar feature of the
singularly perturbed problems is that their solutions have usually
the modes of a boundary layer with unknown width. If the
perturbation source acts inside the domain of the problem state-
ment, then the solution singularity is localized in the vicinity of
the perturbation (Chang and Howes, 1984). Some general ideas
concerning this effect are touched by Elishakoff et al. (2001). In the
problems of the DS buckling in vertical bore-holes, these resumes

were corroborated in Gulyayev et al. (2009). It was shown by
computer simulation that the incipient buckling of a DS in a deep
vertical bore-hole takes place in its lower boundary segment and
the buckling mode has the shape of a 3D irregular spiral wavelet.
In Gulyayev et al. (2014), analogous conclusions were formulated
relative to inclined rectilinear wells. As shown below, the buckling
mode of a DS in a curvilinear bore-hole may take shape of an
irregular sinusoidal wavelet localized inside the bore-hole domain.
Therefore, one may not guess analytical expression of a mode of
stability loss (sinusoidal or spiral), he must construct the veritable
irregular mode. However, that is not easy because the most
troublesome property of the singularly perturbed problems is
poor calculating convergence of their solutions.

The second distinctive feature of phenomenon of a DS
buckling in a curvilinear bore-hole is the extensively used
assumption of ceaseless contact interaction between the DS and
the bore-hole. In this situation, the bore-hole surface plays the role
of a constraint and effects of critical and post-critical buckling of
the DS should be considered as a 3D motion of an elastic curve in
the curvilinear channel surface. Any channel surface with circular
cross-section is described by complicated analytic expressions.
Therefore, the considered problem is very hard but solvable, as
shown below. In mechanics, two approaches based on the
Lagrange methods are used for its statement. In the Lagrange
method of the first type, the constraint equations are considered
as additional constitutive equations and Lagrange multipliers are
supposed as additional required variables. Lagrange's method of
the second type is based on application of generalized coordinates.
This method is more cumbersome for the problem statement but
on its application the order of the constitutive equation diminishes
to four, and it acquires the structure of equation of Eulerian
stability of a rectilinear beam. Below, the second approach is used.

The third aspect of the problem touched is the question of
the torque influence on the DS stability and modes of its buckling.
If the vertical DS is not constrained by a bore-hole wall, then, as
Greenhill revealed in 1883, the torque is the principal cause of its
spiral buckling. This effect can be simulated with application of Eq.
(1) (see also Mitchell (2008)). But if to constrain the DS displace-
ments and exclude, for example, the uðzÞ variable by constraint
uðzÞ ¼ 0, then, the second equation will be only kept in the form
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Here, Mz does not influence on the buckling process.
Moreover, below analogous conclusion is made for the DS in a

curvilinear bore-hole. If the DS lies on the bottom of a plane bore-
hole and only its lateral displacement is not constrained, then the
torque does not influence on the buckling process (see also
Gulyayev et al. (2014)). Nevertheless, when in its initial state, the
DS has 3D geometry, then the torque influence should be taken
into account.

The fourth issue, expecting its solution, is associated with friction
forces, influencing on the buckling process. Mitchell (2008) com-
ments: “Perhaps the most important force and the force least studied
in the analysis of buckling, is friction. The magnitude of the friction
force is usually not that difficult to determine. The difficulty is
determining the direction of the friction vector”. Furthermore, if static
equilibrium of a simple frictional body system with elastic bonds is
considered, the problem of the forces calculation is altogether unso-
luble because it includes also a system of inequalities and has infinite
number of solutions. Comprehensive analysis of this problem is
performed by Wang and Yuan (2012).

But maybe, there is not a necessity to analyze stability of an
immovable DS in a curvilinear bore-hole. Usually, DSs lose their
stability and buckle during lowering and drilling. If to assume that
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