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a b s t r a c t

This paper presents a mathematical and a numerical model for solving the flow and displacement of
completion fluids in the annular space formed by the gap between the outer wall of the casing and the
rock face. Such flows occur during mud circulation and cementing operations and may involve casing
rotation and reciprocation. Most completion fluids have a shear-dependent apparent viscosity.
Additionally, muds and cement slurries often exhibit a yield stress and a gel strength. The displacement
patterns and the final placement of the cement depend on injection rate and casing movement histories,
rheology contrasts, density contrasts as well as the actual shape and orientation of the annular space
which may vary along the wellbore axis. All the above listed phenomena are included in the model. The
mathematical model is derived using the lubrication approach and the narrow-slot approximation for
the momentum balance equations. These methods provide a (2þ1)D-averaged model where the radial
dimension is not neglected but averaged across the gap. The numerical model is developed in the goal of
minimizing computational time. It takes advantage of multiprocessor architectures, first to pre-compute
the closure equations linking local flow velocity to local pressure gradient, prior to running the
displacement simulation, and second, to solve the non-linear pressure equation by sampling multiple
choices of relaxation parameters.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cements support and protect well casings and help attain zonal
isolation. Failure to accomplish proper cement coverage can result in
unsafe, environmentally dangerous, and less profitable wells. The
model presented here can help engineers deliver guidelines for ways
to control many of the parameters that strongly affect coverage, in
the goal of designing more robust cementing jobs. In order to achieve
uniform cement coverage, it is important to ensure that no mud is
left in the annular space. Indeed, cement may not set along mud
channels, and eventually, a path is left behind the casing that the
formation fluids may follow. Annular fluid migration may cause loss
of produced hydrocarbon into a lower pressure zone, which may or
may not be part of the production interval, and hydrocarbon
contamination of shallower aquifers. The migration may also cause
pressure imbalance between annulus and tubing resulting in pipe
deformation or burst and to a blowout at the wellhead.

In order to predict the final distribution of the cement, a model
must be able to describe the geometry of the annulus. Typically, the
annulus forms a narrow space of varying width. The geometry varies

axially due to changes in wellbore and/or casing diameters, and
azimuthally due to irregular wellbore shapes and to casing eccentri-
city. The orientation of the casing eccentricity may be arbitrary and is a
result of the distribution of friction along the casing during its descent
into the wellbore. Additionally, it is not uncommon to rotate and/or
reciprocate the casing in the goal of maximizing mud removal during
cementing operations. The shearing motion created by the casing
movement may force the mud to yield in places where it would
remain gelled otherwise. It may also force the slurry to reach some
narrower parts of the gap that would remain unreachable otherwise.
The model must also account for the non-Newtonian nature of the
completion fluids. Traditionally, such fluids are described as Herschel–
Bulkley fluids. Such fluids have a shear-dependent viscosity and may
have a yield-stress. The yield-stress is a measure of the wall shear-
stress below which the fluid stops flowing and freezes like a solid. Gel
strength is also a common feature of these fluids, a measure of the
shear-stress that must be exceeded before the fluid starts flowing
while initially at rest. The fluids involved in a pumping schedule will
have different rheological properties and densities which, even in a
regular axisymmetric annulus, may be responsible for complex non-
uniform displacement patterns.

Studies of the annular flow of visco-plastic fluids deal with two
problem types. The first is relevant to mud circulation, a single-fluid
flow problem focusing on the determination of the annular flow field
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and friction pressures. In the field, mud circulation is performed to
ensure that the mud does not gel and that drilling cuttings are
transported to surface prior to pumping the cement slurry. The
second deals with mud displacement, a multi-fluid flow problem.
Mud displacement occurs as soon as spacers, washes and slurries are
pumped. The study of fluid circulation started with a single Bingham
fluid in concentric annuli (a sub-class of Herschel–Bulkley fluids) in
Fredrickson and Bird (1958) where the flow-rate vs. pressure–drop
relationship is established. The equation for Herschel–Bulkley fluids
was presented in Hanks (1979). Flow profiles for single Bingham
fluids were investigated in Walton and Bittleston (1991) using the
narrow gap approximation (a.k.a. slot approximation) and in Szabo
and Hassager (1992), analytically for asymptotically small eccentri-
cities and numerically otherwise. These studies focused on describing
the flow in the plan normal to the casing axis. Casing rotation was
introduced in Bittleston and Hassager (1992), again for a single
Bingham fluid. In this work, a semi-analytical solution is found when
the slot approximation is used and a numerical one is used when the
approximation fails. In Escudier et al. (2002), extensive high resolu-
tion 2D finite-volume numerical flow calculations of various non-
Newtonian fluids (including Herschel–Bulkley fluids) are proposed
for eccentric annuli and rotating casings. This work provides a good
review of published work on this matter. However the focus remains
on friction pressures and not on circulation efficiency. Friction
pressures were also investigated experimentally for Herschel–Bulk-
ley fluids in Kelessidis et al. (2011) for both concentric and fully
eccentric annuli. Early studies of the displacement problem include
that in McLean et al. (1967) with a 1D model based on the sectored
concentric annulus analogy for Bingham fluid in eccentric annuli,
without gravity. Casing rotation was investigated experimentally and
observed to improve mud displacement in eccentric annuli. In Jamot
(1974), porous media flow equations are used to model annular flow
and to account for buoyancy forces. It is observed that pumping with
a denser or more viscous fluid improves displacement efficiency. In
Flumerfelt (1975) with power-law fluids, and then in Beirute and
Flumerfelt (1977) for Robertson–Stiff fluids, a lubrication-type model
is developed to study the displacement of one fluid by another
assuming vertical upwards flow without azimuthal flow. While this
type of model has the advantage of solving the flow and displace-
ment profile across the gap, it suffers from severe limitations for
cases where significant azimuthal flow occurs e.g. when fluids have
different densities. Additionally, this type of lubrication models
significantly over-estimate residual mud layers on the wall as shown
in Allouche et al. (2000) and Taghavi et al. (2012). 2D models solving
the flow in the axial-azimuthal plan have been proposed and derived
using gap-averaged properties with the lubrication approach. Work
from Bittleston et al. (2002), Pelipenko and Frigaard (2004b) and
Pelipenko and Frigaard (2004a) is similar to Hele–Shaw approach.
We will follow this type of modeling here. The annular flow field
being essentially 3D in most cases, it is tempting to consider solving
the 3D Navier–Stokes equations over the full annulus, coupled with
the relevant rheological constitutive equations of the fluids involved.
If feasible, such an approach would suffer fewer limitations than
other models. 3D Newtonian displacements were considered in
Szabo and Hassager (1997), and more recently, 3D non-Newtonian
models have been suggested in Savery et al. (2008) and in Zulqarnain
(2012). However, these approaches are too restrictive when it comes
to simulating the displacement over the full wellbore scale and over
typical operation timescales. Such simulations take prohibitively
large execution times and are restricted to very coarse meshes which
prevent the correct modeling of the displacement in many cases:
large shear gradients near the walls, turbulent flows, accurate flow
profile across the gap (residual or bypassed mud layers on the
wall), instabilities due to density contrasts (Rayleigh–Taylor instabil-
ity) and/or shear-rate contrasts (Kelvin–Helmholtz instability) and/or
viscosity contrasts (Saffman–Taylor instability).

Here, we pursue the modeling approach developed in Bittleston
et al. (2002), Pelipenko and Frigaard (2004a) and Pelipenko and
Frigaard (2004b), whereby classical dimensional scaling methods are
used to reduce the full three-dimensional equations of motion to a
two-dimensional averaged model. We extend the models to include
casing reciprocation and rotation as well as arbitrary casing eccen-
tricity. The above work assumes flow symmetry along the vertical
plan and vertical-only eccentricity. However, it is important to extend
it to the more general case, not only because horizontal eccentricity
occurs in the field, but also loss of flow symmetry is to be expected
when unstable flow conditions are met (Tehrani et al., 1993).
Additionally, we also restrict the use of the narrow gap approxima-
tion to the derivation of the momentum balance equation. Deriving
the continuity equation and fluid transport equations without using
the narrow-gap assumption allows us to achieve a perfect mapping
of the actual annular geometry. New numerical resolution strategies
are also developed to speed up computations.

2. The (2þ1)D model

The model is developed in Appendix A and only the final
equations are presented below. We consider the injection of multiple
fluids into the annulus. Initially, the annulus is occupied by a given
number of fluids with a known distribution. We denote nf the
number of fluids that are present at any time in the annulus during
the pumping. Each fluid is identified by an index iA ½1;nf � and
characterized by its density ρi. The volume fraction of fluid iA ½1;nf �
at a given time and position in the annulus is denoted ~ci. Each fluid is
also characterized by its own set of rheological parameters, as will be
detailed in Section 2.4.

We aim at tracking the fluids' volume fractions in time, along the
annulus, axially and azimuthally, after averaging the volume frac-
tions, the axial and azimuthal fluid velocities radially across the gap,
for a given axial depth and azimuth (hence the (2þ1)D nature of the
model). Thus, the model calculates the time-evolution and distribu-
tion of the gap-averaged volume fractions, using nf fluid transport
equations, the gap-averaged axial and azimuthal velocities and the
pressure along the azimuthal-axial plan formed by the annulus using
a single elliptic pressure equation.

2.1. The model assumptions

The use of this model is restricted to laminar flow (zero-th order
approximation of the momentum balance equation) that is typically
valid for narrow enough annuli. Examination of field conditions
suggests that laminar flow and narrow-gap (see Eq. (4)) are the most
common situations for primary cementing operations. This model is
not expected to remain valid in the case of wider annuli (say
rc=rwr0:8 as found in Szabo and Hassager (1992), rc and rw being
the casing and wellbore radii, respectively) and for turbulent flow.
Wider annuli may be observed during other type of cementing
operations, such as in remedial cementing where smaller pipe
diameters are used to convey slurries. The model assumes that the
temperature is constant in time and space. As fluid properties may
vary with temperature, modeling their evolution during flow requires
coupling the current flow model with the energy balance equation. It
is expected that temperature distribution and evolution may signifi-
cantly impact fluid properties in the field, and therefore fluid circula-
tion patterns. For this reason, the above coupling is also being studied
by the authors but, for the sake of clarity, it is not considered in the
present model. Each fluid is assumed to be non-thixotropic. In reality,
some completions fluids show thixotropy. One example is the setting
of the slurry into cement. Drilling muds have also been reported as
being thixotropic in Livescu (2012). Accounting for thixotropy remains
a challenge as it requires that the shear history of the fluid is tracked.
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