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a b s t r a c t

The one-dimensional drift-flux model efficiently predicts gas–liquid flows dominated by gravity force.
The advantages of the drift-flux model applied to pipe flows are the absence of interfacial terms, well
posedness and the reduced number of transport equations, but its weakness lays on the constitutive
laws to predict the wall shear force of a gas–liquid mixture. Its success on upward vertical slug flows is,
in part, due to the fact that for gravity dominated flows the friction contribution to the pressure gradient
is usually small. In these applications the accuracy of the wall shear force model is not dominant. A
challenging aspect is the application of the drift-flux model to the horizontal slug flows where the
pressure gradient is due to friction force. The objective of this work is to develop a comparative analysis
among wall shear stress models applied to the one-dimensional, steady state drift-flux approach applied
to gas–liquid mixture flowing in the slug regime. Effective viscosity models based on the homogeneous
and also on empirical propositions are employed. Additionally it is also introduced a mechanistic wall
shear stress model. The effect of the use of distinct wall shear models into the drift-flux model is
assessed by comparing the estimated pressure gradients against experimental data.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The flow a gas and oil mixture challenges petroleum engineers
to effectively monitor, control and optimize the oil production. The
accomplishment of these tasks assures a successful and econom-
ical flow of hydrocarbon from the reservoir to the oil rigs. The flow
assurance and the economical aspects are assessed mostly by the
use of flow simulators which estimate the flow pattern, the
phases' velocities, volumetric concentration, the pressure drop,
heat transfer rate, mixture temperature among other flow proper-
ties. The accuracy of these estimates depends on the accuracy on
the physical models built-in on the flow simulators.

This work addresses to the accuracy of the drift-flux model, one
of the gas–liquid models frequently employed to steady and
transient flow simulators. The drift-flux model is based on sound
physical and mathematical principles (Drew and Passman, 1998)
but, as many other models, it has more unknowns than equations
demanding constitutive equations for closure. One weak point of
this model is related to the constitutive equations for the viscous
and turbulent stresses, which for one-dimensional models reduces
to the wall friction forces. This is a complex issue since the stress
tensor is represented as the contribution of the individual phases

present in the mixture plus one extra term due to the interfacial
forces. Manninen et al. (1996) discuss different approaches to this
issue but there is no generalized theory. Usually the concept of a
mixture viscosity or effective viscosity is adopted. This approach is
largely accepted for dispersed flow regime where the phases are
strongly coupled. But for separated flow regime, such as the
stratified or the annular flows, the phases are weakly coupled
and it is expected, beforehand, a poor performance of the drift-flux
model.

The objective of this work is to assess the accuracy of the drift-
flux model on predicting the pressure gradient for slug flow
regime employing distinct wall shear stress models. The choice
by the slug flow pattern is due to the application aspects and to
the fundamental principles brought by this flow pattern. The
application regards to the frequent occurrence of this pattern in
crude oil pipelines. The fundamental principles consist of finding a
suited wall friction model to capture the passage of liquid slugs
trailed by elongated bubbles represented by alternating separated
and dispersed phases flow pattern. This feature defines the wall
shear stress models representation for having two flow patterns
with a phase coupling shifting between strong and weak. Despite
the fact that there were many attempts at developing various wall
shear stress models for all kinds of gas–liquid flow patterns, it is
not of the authors' knowledge that a comparative study of wall
shear stress models performance for slug flow employing specifi-
cally the drift-flux model.
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The comparative wall shear stress analysis is developed using
one dimensional, isothermal and steady state drift-flux model to
estimate the pressure gradient on the upward vertical and
horizontal slug flows. This analysis focus on the accuracy of the
pressure gradient estimated by drift-flux model and guides the
flow designer to a wall shear stress model selection according to
his working scenario.

The work is structured as follows. The drift-flux equations and
the wall friction models are defined in Sections 2 and 3. Sections
4 and 5 show the numerical algorithm and the experimental
procedure. The data comparisons and conclusions are shown in
Sections 6 and 7. The Appendix A describes the procedures to the
closure equations to one of the wall friction models.

2. The gas–liquid drift-flux model

This section introduces the one-dimensional, isothermal and
steady state drift-flux model. The model applies to a pipe with
constant circular cross section with length, diameter and inclina-
tion with the horizontal represented by L, D and θ respectively.
The definitions of the one-dimensional variables are introduced
before the model for clarity and conciseness reasons.

2.1. Definitions of the flow variables and their kinematic
relationships

The gas or the liquid phases are identified by index k which can
be G or L. All variables express an average value at the pipe cross
section here represented by A.

Gas phase fraction α is the area ratio between the pipe's section
taken by gas phase, AG, and the pipe cross section, A:

α¼ AG=A; ð1Þ
while the liquid holdup is simply ð1�αÞ.

Mixture density ρ is defined as the sum of the phase densities
weighted by the void fraction:

ρ¼ αρGþð1�αÞρL: ð2Þ
Phase velocity ðUkÞα is defined by the ratio between the volu-

metric flow rates of phase Qk divided by the pipe cross section area
taken by phase Ak:

ðUkÞα ¼ Qk=Ak �Qk=ðαkAÞ; k¼G or L: ð3Þ
Phase superficial velocity Jk is the velocity of phase k as if it

would take alone the whole pipe cross section:

Jk ¼Qk=A� αkðUkÞα; k¼G or L: ð4Þ
The mixture superficial velocity J is defined as the sum of the

phase superficial velocities:

J ¼ JGþ JL � αðUGÞαþð1�αÞðULÞα: ð5Þ
Drift kinematic law proposed by Zuber and Findlay (1965)

establishes a linear relationship between the phase velocity, the
mixture superficial velocity J and the local drift velocity ðVG;JÞα:
JG=α� ðUGÞα ¼ C0JþðVG;JÞα: ð6Þ

The distribution parameter C0 is related to the cross section
profiles of local values of J and α. The local drift velocity ðVG;JÞα is a
parameter dependent on the flow pattern, fluid transport proper-
ties and pipe size and inclination. The values of C0 and ðVG;JÞα are
presented in Eq. (A.7) in the Appendix A.

2.2. The mass and momentum equations

The model applies to an isothermal gas–liquid mixture where the
gas behaves as a real gas and the liquid phase is incompressible.

There is no phase change and negligible surface tension effects, i.e.,
both phases share the same pressure. The phase mass conservation
equations are

d
dz

½αρGðUGÞα� ¼ 0; ð7Þ

and

d
dz

½ð1�αÞρLðULÞα� ¼ 0: ð8Þ

The mixture momentum equation arises by adding the phases'
momentum (Pauchon et al., 1993; Pauchon and Dhulesia, 1994):

d
dz

½αρGðUGÞ2αþð1�αÞρLðULÞ2α� ¼ �dP
dz

�T W�ρg sin θ; ð9Þ

where P is the pressure, T W is the wall friction force per unit
volume, g is the gravitational acceleration and θ is the pipe
inclination angle with the horizontal. The coordinate z is parallel
to the pipe axis direction. The domain inlet and outlet are
positioned at z¼0 and z¼L.

2.3. The model reduction

An inspection on Eqs. (7) (through 9) reveals a system of
differential equations with five unknowns: α, ðUGÞα , ðULÞα, P, and
T W. The phases' transport properties ρL, μL and μG are known and
considered as constants. The gas phase density is determined
using the compressibility factor, Z, as

ρG ¼ P=ðZRGT0Þ; ð10Þ
where RG is the specific gas constant and T0 is the flow tempera-
ture. The pipe's length, diameter and inclination with the hor-
izontal, L, D and θ respectively are also known. The boundary
condition Po and the input variables JG;o and JL;o are given at the
pipe outlet, which represent, respectively, the pressure and
the liquid and gas superficial velocities at the pipe's outlet. Since
the flow is isothermal it is assumed that T0 prevails over the whole
flow domain.

Using the kinematic law, Eq. (6), the void fraction α is
expressed as a function of the pressure only and of the values
JG;o, JL;o and Po as

α¼ JG;oðPo=PÞ
C0½JG;oðPo=PÞþ JL;o�þðVG;JÞα

; ð11Þ

where C0 and ðVG;JÞα are given in Eq. (A.7).
From Eqs. (7) and (8) it is possible to express the phases'

velocities in terms of the void fraction and of the values JG;o, JL;o
and Po as

ðUGÞα ¼ JG;oðρG;o=ρGÞ=α� JG;oðPo=PÞ=α; ð12Þ

ðULÞα ¼ JL;o=ð1�αÞ: ð13Þ
Furthermore, substituting Eq. (11) into Eqs. (12) and (13), turns

the phases' velocities dependent of the pressure only. Inserting
Eqs. (12) and (13) into Eq. (9) and isolating the pressure dependent
terms turns out

d
dz
ϕ½PðzÞ� ¼ �T W�ρg sin θ; ð14Þ

where ϕ½PðzÞ� is the pressure dependent terms associated with the
axial direction derivative:

ϕ½PðzÞ� ¼ PþαρGðUGÞ2αþð1�αÞρLðULÞ2α: ð15Þ
This procedure reduced the set of Eqs. (7) to (9) into Eq. (14)

which is a single ordinary differential equation having the pres-
sure as the dependent variable and the pipe axial distance, z, as
the independent variable. While the second term of the RHS of
Eq. (14) is readily evaluated once α is known the first term is the
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