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a b s t r a c t

Permeability modeling of complex carbonate reservoirs is difficult. Porosity–permeability relationships
are weak in carbonates and conventional porosity–permeability transforms give poor results. Even
though the link between porosity and permeability in carbonates persists, other pore system properties,
such as the largest connected pore-throat diameter, are more strongly linked to permeability. This
important pore-throat diameter, as well as related porosity and other pore system architectural
information, is determined by the analysis of mercury injection capillary pressure (MICP) porosimetry
experiments. This paper explores the use of porosimetry data for the calculation of permeability as
originally demonstrated by Purcell in 1949. We return to the tubular bundle model of Purcell and Burdine
with a general mathematical form for the porosimetry data and a new tortuous and fractal relative
tubular bundle. Using mathematical reasoning, without fitting parameters, we obtain a new formula for
the computation of permeability based on the pore system architectural information of highly connected
systems using the MICP porosimetry data. Moreover, we include the observation that the flow paths and
the related tortuosity have a fractal aspect. The result is compared to an extensive porosimetry data set of
the highly connected Arab D limestone, where vugs are absent. For porous media characterized by
porosimetry data, the following expression emerges:

κ≈506
B∞
v

P2
d

e−4:43
ffiffiffi
G

p
;

which is the permeability for a monomodal carbonate pore system characterized by a single Thomeer
hyperbola with associated Thomeer parameters (κ is in Darcy; B∞

v in fractional bulk volume, and Pd is the
minimum entry pressure in psi and G is the pore-geometrical factor). The nearly equal sign is used here
only because of an approximation used for the modified Bessel function of the second kind present in the
general solution and approximate knowledge of the fractal exponent and the percolation path length
ratio. There are no fitting factors. The exponents on the variables in our permeability formula
demonstrate the significant shift in emphasis from porosity to the diameter of the largest connected
pore throats, Pd. Note that the presence of vugs are not considered in this work, since they do not form
part of the Arab-D limestone matrix.

This mathematical effort emphasizes the relative importance of pore system attributes on perme-
ability as commonly found in carbonate porosimetry data. The approach can be readily extended to
multimodal carbonate pore systems, to other sources of pore system architectural data and is shown to
be equivalent to the operation of an incomplete Laplace transform on the porosimetry data. Importantly,
and in contrast to previous permeability models to which we compare, this new formulation sets the
stage for a complete and scale independent understanding of permeability in carbonate pore systems
commonly encountered in the Arab D limestone and similar pore systems.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The carbonate oil reservoirs of Saudi Arabia are the most
prolific in the world. Their porosities and permeabilities are

excellent, but detailed understanding of the petrophysical proper-
ties of these complex carbonate pore systems is insufficient. The
carbonate pore systems are complex and multimodal (Cantrell and
Hagerty, 1999; Cantrell and Hagerty, 2003; Clerke et al., 2008)
leading to poor porosity–permeability relationships. Standard
porosity–permeability transforms have major and well-known
shortcomings (Delfiner, 2007) especially in the case of carbonates.
Estimating accurate matrix permeability for the Arab-D limestone
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from porosity alone is unsatisfactory (Clerke et al., 2008; Clerke,
2009). Additional information about the pore systems is needed.
Saudi Aramco has acquired many mercury injection capillary
pressure (MICP) porosimetry data on Arab D limestone core plugs
(Clerke et al., 2008), which are analyzed using the method
proposed by Thomeer (1960) who observed a hyperbolic relation-
ship between the fractional bulk volume of injected mercury, log
(Bv) and the applied mercury pressure, log(Pc). The amount of
mercury entering a single pore system in an MICP experiment,
expressed as the fractional bulk volume occupied Bv, exhibits a
distinct hyperbolic shape. Thomeer's observation is represented by
his empirical formula:

BvðPcÞ≈B∞
v exp

−G
log ðPcÞ−log ðPdÞ

� �
for Pc4Pd; 0 elsewhere: ð1Þ

The details in position and shape of the hyperbola are deter-
mined by the three Thomeer parameters: Pd, which is the “mini-
mum entry pressure” or “threshold pressure”, related to the largest
connected pore throat diameter; G is the “pore geometrical factor”
related to the range of pore throat diameters and Bv

∞, which is the
“fractional bulk volume occupied” by mercury at Pc¼∞. Pc is the
applied mercury pressure, normally in psi.

These three pore system parameters determine the pore
geometrical capillary forces within the reservoir pore system and
exert important control on the original distribution of water and
oil within the reservoir pore system. This significant pore geome-
trical information must also contain the information regarding the
flow of liquids through the reservoir and thus largely define
absolute permeability. This realization was introduced by Purcell
(1949) and Burdine (1953) and later successfully developed by
Thomeer (1983) and Swanson (1981), and others (Huet et al.,
2005), despite the fact that pseudo-static MICP data do not give
explicit information on the accessibility, complexity and tortuosity
of the flow paths. Our efforts expand upon that of previous
workers by using rigorous mathematics and by introducing a
tortuous and fractal relative tubular bundle. The result is a
completely new functional form for permeability. We proceed to
compare our new formulation to abundant Arab D carbonate MICP
data (Clerke et al., 2008).

2. Permeability of a tortuous tubular bundle

We represent the actual pore system by an assortment of
different tubes, connecting one end of the rock to the other,
starting with the approach of Purcell (1949), Burdine (1953), and
Calhoun et al. (1949). In Appendix A, a step-by-step derivation is
given. It leads ultimately to the general equation, which will be
summarized in this section.

The total volume of liquid passing through a piece of rock of
length, L, and cross-sectional area, A, is described by the standard
Muscat–Darcy fluid-flow equation as

dVliq

dt
¼ κA

μL
ΔP; ð2Þ

where μ is the viscosity of the liquid and ΔP is the pressure drop
over the length of the tube. κ is the permeability which needs to be
expressed in terms of fundamental rock properties, such as
porosity and pore architectural parameters.

Under a pressure gradient, liquids flow through a porous rock
along certain paths, which are envisaged as well-defined pipes or
tubes. We assume that the flow is non-turbulent. In this tubular
bundle representation of a rock pore system, the tubes connect
one side of the rock sample with the other. It is assumed that the
tubes have varying dimensions, different radii, ri, and different
lengths Li. Moreover, the tubes are tortuous and not straight, so

that the length of a tube is longer than the sample outer length, i.e.
Li4L.

The tubes are identified by their radii, ri. Within the “i-family”,
there are ni tubes. Each tube of radius ri can in principle have a
different length. However, here, we assume that they all have the
same length Li, where Li is an average length of all the tubes with
radius ri.

The lengths of the tubes are also modeled to increase with
decreasing diameters, i.e. Li+14Li (throughout this paper we use
the convention that the radius decreases with increasing index i,
i.e. ri+1ori). This is reasonable because the flow paths through the
narrower passages of the pore system are expected to be more
tortuous and thus longer. Moreover these tubes of narrow dia-
meters should be more numerous, i.e. ni+14ni.

The Hagen–Poiseuille flow equation for this bundle of tubes can
be written as (for details see Appendix A):

dVliq

dt
¼∑

i
ni

πr4i
8μLi

ΔP: ð3Þ

From Eqs. (2) and (3), the permeability is extracted as
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The volume of a single tube with radius ri is vi¼πri
2Li and the

volume of all the tubes with radius ri is Vi ¼nivi¼niπri
2Li. The

volume of the bulk rock Vb¼AL. With these, we can rewrite (4) as
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where the incremental porosity is introduced, Δφi ¼ Vi=Vb, which
is related to all the tubes with radius ri.

The total porosity is the sum of all incremental porosities:
ϕ¼∑iΔφi; and porosity normalization yields

κ¼ 1
8
ϕ∑

i
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ϕ
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: ð6Þ

Now, we denote the properties of the largest diameter tube
with the special subscript, “d”. So the largest diameter tube has a
radius of rd and a length of Ld. The subscript “d” anticipates the
relationship with Pd, the minimum entry pressure for mercury
(threshold pressure) where in an MICP experiment the mercury
first enters the largest pore throat by penetrating into the throat
(s) of radius rd.

It is now convenient to denote the dimensions of all other
tubes, i.e. radii and lengths, relative to that of the largest tube in
the system, by rewriting the previous equation as (see Eq. (A4))
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The contributions of the tube radii and lengths are now all

referenced to the radius and length of the biggest tube in the
system. It is reasonable to assume that the biggest tube has also
the shortest length Ld, which is smaller than Li. Of course Ld is
larger than the length L of the sample, so that

0≤
Ld
Li

≤1 and 0≤
ri
rd

≤1

Let χL be the relative tube parameter product defined as

χ2L≡
ri
rd

� �2 Ld
Li

� �2

o1: ð8Þ

Then since ∑iΔφi=ϕ¼ 1; the porosity weighted square relative
tube parameter is ∑iΔφi=ϕχ

2
L ¼ χ2L

� �
and Eq. (7) can now be written
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