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A B S T R A C T

To date many methods of constructing porous media have been proposed. Among them, the multiple-point
statistics (MPS) method has a unique advantage in reconstructing 3D pore space because it can reproduce pore
space of long-range connectivity. The Single Normal Equation Simulation (SNESIM) is one of most commonly
used algorithms of MPS. In the SNESIM algorithm, the selection of training image is vital because it contains the
basic pore structure patterns. In the previous reconstructions of 3D porous media using SNESIM, a 2D slice was
usually employed as the training image. However, it is difficult for a 2D slice to contain complex 3D pore space
geometry and topology patterns. In this paper, a 3D training image is used in order to provide more realistic 3D
pore structure features. Besides, a multi-grid search template is applied for the purpose of capturing the pore
structures of different scales and speeding up the reconstruction process. Two sandstone cores are taken as test
examples and the 3D porous media are reconstructed. The two-point correlation function, pore network struc-
ture parameters and absolute permeability are applied as the evaluation indexes to validate the accuracy of the
reconstructed models. The comparison result shows that the reconstructed models are in good agreement with
the real model obtained by X-ray computed tomography scanning in the pore throat geometry and topology and
transport property, which justifies the reliability of the proposed method.

1. Introduction

Porous media modeling—pore-scale imaging and modeling is be-
coming more and more popular for engineers of both petroleum and
environment fields to predict the macroscopic transport properties and
understand the displacement processes (Blunt et al., 2013; Wang et al.,
2007; Chen and Zhou, 2017; Chen and Yao, 2017; Chen et al., 2016;
Abdelfatah et al., 2017; Alizadeh et al., 2014; An et al., 2016a; Kakouei
et al., 2017; Vaz et al., 2016). As a result, a new technique, digital rock
analysis, has been developed not only for understanding the visuali-
zation of pore structures and mineral spatial arrangement (Chen and
Zhou, 2017; Liu et al., 2016), but also for predicting various petro-
physical properties and studying transport processes, such as transport
of electricity, acoustic wave and multiphase flow in porous medium
(Van der Land et al., 2013; Wang and Chen, 2007; Arabjamaloei and
Ruth, 2016; An et al., 2016b; Nooruddin and Blunt, 2016; Qajar and
Arns, 2016; Liu et al., 2017). In essence, these transport properties are
governed by the types of grains, the morphology and topology of the

pore space, arrangements between the grains and pore space and the
conditions of transport process (Okabe and Blunt, 2005; Tahmasebi and
Sahimi, 2012). The premise of predicting these properties and under-
standing these transport processes is to build an accurate 3D pore space.

With the innovation of experimental instruments and the break-
through of new theories, scholars have put forward many methods to
construct the porous media. So far, the methods of modeling porous
media are divided into two main groups, namely, experiment tech-
nology methods and statistical methods. The former applies experi-
mental instruments to photograph or scan the rock sample to obtain a
large number of 2D images, then uses the software to build a 3D rock
model by stacking these 2D slices. For this approach, X-ray computed
tomography (Blunt et al., 2013, An et al., 2016a), focused ion beams
(Hemes, et al., 2015; Kim et al., 2012) and laser scanning confocal
microscopy (Minsky, 2011; Paddock, 2000) are common tools. Al-
though the X-ray computed tomography scanning method and focused
ion beams can establish an accurate 3D digital core model, they are so
expensive and time-consuming (Hajizadeh et al., 2011). Statistical
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methods employ stochastic algorithms to generate stochastic models
based on the little information from the slices. These methods include
the truncated Gaussian random field (Quiblier, 1984; Ioannidis et al.,
1997; Yeong and Torquato, 1998), simulated annealing (Talukdar and
Torsaeter, 2002 ; Talukdar et al., 2004; Kainourgiakis et al. 2005; Ju
et al. 2014), Markov chain Monte Carlo (Wu and Crawford, 2004; Wu
et al., 2006), sequential indicator simulation (Keehm, 2003; Keehm
et al., 2004), multiple-point statistics (Okabe and Blunt, 2004; Okabe
and Blunt, 2005; Tahmasebi et al., 2012; Comunian et al., 2012; Xu
et al., 2012; Hurley et al., 2015; Tahmasebi et al., 2015a; Tahmasebi
et al., 2015b), phase-recovery algorithm (Fullwood et al., 2008;
Hasanabadi et al., 2016a; Hasanabadi et al., 2016b) and process-based
or grain method (Øren and Bakke, 2002; Øren and Bakke, 2003; Biswal
et al., 2007; Thovert and Adler, 2011). Comparing with the former
method, the latter not only has the merits of low cost and high effi-
ciency, but it can also combine different scale information and re-
construct a larger model (Blunt et al., 2013). However, the truncated
Gaussian random field, simulated annealing and sequential indicator
simulation rely on the variogram to evaluate the correlation of two
points of the geological variable. The variogram is difficult to precisely
simulate the void space with complex geometry and topology, which
tends to cause reconstruction of the pore space lacking of long-range
connectivity (Hajizadeh et al., 2011; Tahmasebi and Sahimi, 2012;
Tahmasebi et al., 2012). In 2002, Bakke and Øren put forward a new
modeling technique based on the formation of sedimentary rock con-
taining sedimentation, compaction and diagenesis processes (Øren and
Bakke, 2002). But the process-based method assumes that all the par-
ticles are spheres, which is not real for the sedimentation of grains in
that the shape of most grains is irregular when they are depositing. The
method also only simulates several diageneses, such as quartz cement
overgrowth and clays growth, so it is not suitable for simulating the
rock of having undergone complex diageneses. The above dis-
advantages have contributed to the proposal of a more accurate method
based on the multiple-point statistics (MPS) that can effectively address
the aforementioned problems especially in the long-range connectivity
(Deutsch, 1992; Strebelle, 2000; Strebelle, 2002; Okabe and Blunt,
2004; Okabe and Blunt, 2005; Tahmasebi et al., 2012; Comunian et al.,
2012; Xu et al., 2012; Hurley et al., 2015).

MPS was first proposed by Deutsch (1992). To date MPS is divided
into two major categories, iterative algorithms and noniterative algo-
rithms (Strebelle, 2002). Iterative algorithms were extremely CPU de-
manding and seriously restricted the efficiency (Guardiano and
Srivastava, 1993). Until 2000, Strebelle proposed the Single Normal
Equation Simulation (SNESIM) algorithm that effectively overcomes the
problem associated with the previous algorithm (Strebelle, 2000).
SNESIM algorithm applies the search tree to record and store the con-
ditional probability distribution of all data events acquired by scanning
the training image, which needs to scan the training image only once in
the simulation process and dramatically reduces the computational
time needed.

MPS has been widely used in reservoir modeling (Srivastava, 1992;
Liu, 2006; Boucher, 2009), especially in fluvial facies. In 2004, Okabe
and Blunt reconstructed digital rock modeling using the MPS (Okabe
and Blunt, 2004, 2005, 2007). They took a 2D image from 3D micro-CT
data of the rock as the training image and rotated this image around
each principal axis to generate 3D conditioning data. Then the pre-
ferred search template was used to scan the training image and a sto-
chastic 3D digital rock was reconstructed. Comparing with the model
established by the simulated annealing method, the curve fraction of
percolating cells of the model gotten by MPS is in better agreement with
the curve of the real model obtained by the X-ray computed tomo-
graphy scanning, which verifies that MPS is better than the simulated
annealing method in reproducing the pore space of long-range con-
nectivity.

However, Okabe and Blunt assumed that the porous medium was
explicitly isotropic in X, Y and Z directions, which is obviously unreal

for the heterogeneous rock. Therefore, a novel idea was proposed to
address the problem by generating a sequence of 2D slices and stacking
these 2D slices. (Hajizadeh et al., 2011). Later, the cross-correlation
simulation method was also presented to reconstruct anisotropic 3D
digital rocks only using a single 2D thin section (Tahmasebi and Sahimi,
2012; Tahmasebi et al., 2015a, 2015b). Other scholars also re-
constructed some 3D porous media based on a 2D training image
(Comunian et al., 2012; Xu et al., 2012; Hurley et al., 2015). For these
reconstructions, the training image is only one 2D slice. In fact, a 2D
image cannot contain 3D pore-space structural features, for example the
topology characteristic (Zhang, 2015). Different from the previous re-
construction of porous media using SNESIM algorithm, we will make
use of a 3D training image built by X-ray computed tomography scan-
ning taking the place of a 2D training image to supply the more accu-
rate 3D pore structures in this paper. Two orthogonal slices are set to
the conditioning data. That is, the Berea sandstone and S sandstone
cores are taken as the test examples. For each porous medium, two
representative volume elements (RVE) of 1503 voxels from different
locations are extracted. One is set for the 3D training image so as to
provide more real pore space structure patterns, the other for the real
model to supply the conditioning data and be compared with the next
reconstructed models to validate the proposed method. Two orthogonal
2D slices are chosen from the real model, second RVE, as the con-
ditioning data. The SNESIM algorithm is applied to generate the sto-
chastic porous media through using the 3D training image and multi-
grid search template under the constraint of the conditioning data. This
paper is organized as follows: Sections mainly gives a brief introduction
of SNESIM algorithm including some terminologies while Section 3
describes modeling steps in detail and parameters setting. The evalua-
tion of the accuracy of reconstructed models is going to be demon-
strated in Section 4. Section 5 makes a summary of the full text.

2. SNESIM algorithm

SNESIM algorithm is one of the most common methods for discrete
variable simulation in MPS, for example pore space (Tahmasebi et al.,
2012). To facilitate the understanding of this algorithm, several im-
portant terminologies in the algorithm are briefly introduced below.

2.1. Data template and data event

Data template τn, as well as search template, consists of central node
u and n vectors + = ⋯α nu h{ , 1,2, , }α radiating from the center node.
A data event dn is constituted by the data template τn and the n data
values of the n vectors + = ⋯α nu h{ , 1,2, , }α . A square 7×7 data
template and a data event are shown in Fig. 1. In the digitized image,
the node is usually substituted for the term “pixel” or “voxel” to re-
present a minimum unit in the paper. The pixel is used in 2D image and
voxel is used in 3D image.

2.2. Training image

A training image is essentially a conceptual model that should try to
include all pore structure patterns for porous media. The training image
can be derived from the 3D model obtained by micro-CT machine, or
from 2D slices such as cast thin sections or scanning electron micro-
scope images. Fig. 2(a) exhibits a training image and Fig. 2(b) shows
the training image scanned by a 7×7 search template. One of the key
factors that affect the accuracy of reconstructed models is the selection
of a training image. The size choice of a training image determines how
much pore structure features the training image will contain. In terms
of the theory, the simulation result will be better with the training
image of larger size. But due to computer properties, such as the CPU,
the choice of training images should be comprehensively considered
(Liu, 2006). Moreover, the 3D training image should be preferred to 2D
training image in that more real pore structures can be included in the
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