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A B S T R A C T

Horizontal wells with multiple fractures, producing from tight and shale reservoirs, may exhibit linear flow for
long periods of time. Majority of the available analytical solutions that model this flow behaviour assume
uniform permeability, which most likely is an over-simplification of the unconventional reservoirs. Non-
homogeneous shear or tensile failure away from the main induced (primary) hydraulic fractures can lead to a
non-uniform permeability distribution that depends on the distance away from the hydraulic fractures.

In this work, linear flow in a reservoir with non-uniform permeability adjacent to the primary hydraulic
fracture is modeled rigorously using perturbation theory. The diffusivity equation is solved for the pressure
response of a fractured well located in a reservoir of infinite extent with permeability as an arbitrary function of
position. For constant terminal rate (CTR) or constant terminal pressure (CTP) conditions, the linear flow
parameter ( =LFP x kf ) is calculated from the slope of the square-root-of-time plot (plot of rate-normalized
pressure vs. square root of time).

It is demonstrated herein that the calculated LFP corresponds to a weighted average of permeabilities (and
fracture half-lengths); different parts of the reservoir contribute differently to the LFP at different production

times. The LFP is influenced most strongly by permeabilities at a distance =y 0.056 kt
ϕμct
( ) . The derived weighting

functions during CTR and CTP production can be applied in inverse mode for determining LFP distribution near
the hydraulic fractures. This is particularly useful in evaluating the effectiveness of hydraulic fracturing op-
erations and assessing the performance of different fracturing techniques in unconventional reservoirs. In ad-
dition, this work gives significant insight into the concept of distance of investigation (DOI) in tight and shale
reservoirs, and the differences when producing under CTR and CTP conditions.

1. Introduction

Tight and shale oil and gas reservoirs have recently attracted the
industry's attention because of their extent and the recently-acquired
technological ability to extract them. Irrespective of the hydrocarbon
fluid type (oil and/or gas) and reservoir type (tight sandstone or car-
bonates, shales or a combination) the permeability of tight/shale oil/
gas reservoirs is low to ultra-low, on the order of micro- to nano-darcies
in some cases. Thus, a key strategy for their economic production is to
create high-permeability pathways from the reservoir to the well
through massive hydraulic fracture stimulation treatments. In most
cases, depending on a variety of factors including in-situ stress mag-
nitude and orientation, rock fabric etc., an enhanced permeability re-
gion around primary hydraulic fractures may be created. Such a region
is commonly called Stimulated Reservoir Volume, or SRV (Mayerhofer

et al., 2010). The permeability enhancement in the SRV originates from
rejuvenation of existing natural fractures and/or development of a
complex fracture “network” during stimulation. These natural (and
induced) fractures lead to an altered system with a permeability dis-
tribution that is not uniform (Fuentes-Cruz et al., 2014). It is the
combined (averaged) effect of this non-uniform fracture network over
an extensive region around the horizontal wellbore that makes pro-
duction from unconventional reservoirs viable.

Production data (and welltest) analysis of wells completed in tight
and shale reservoirs can exhibit linear flow for long periods of time.
Analysis of long-term linear flow therefore can be used as a means of
obtaining valuable information about stimulation efficiency. One of the
most popular methods for analyzing linear flow is the square-root-of-
time plot, i.e. a plot of rate-normalized pressure (or pseudo-pressure)
versus square root of time (or pseudo-time). The slope of this line is
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used to calculate the linear flow parameter ( =LFP x kf ). In tight and
shale reservoirs, the linear flow parameter (LFP) fuses the effect of the
created complex fracture network (through the xf term), with an in-
duced permeability field (through the k term). This means that the LFP
is the result of an averaging process taking place over a region within
the reservoir; further it describes the effectiveness of the created frac-
ture network. Available approaches for linear flow analysis assume
uniform permeability throughout the reservoir (Clarkson, 2013;
Nobakht and Clarkson, 2012a,b; Wattenbarger et al., 1998; El-Banbi
and Wattenbarger, 1998). While this is a useful simplifying assumption
for a first-pass linear flow analysis, it is of practical significance to
consider the non-uniform nature of the induced SRV and its effect on
linear flow analysis. This is especially useful for gaining a detailed
understanding of the flow performance in tight and shale reservoirs,
and the averaging process taking place during production, in addition
to obtaining an improved characterization around the created hydraulic
fractures.

Previously, Oliver (1990) investigated the averaging process of
permeability through well test analysis of a well located in an infinite
reservoir (radial flow regime) with variable permeability. The aver-
aging process was quantified through an equation that relates the in-
stantaneous semilog slope to a volume integral of permeability varia-
tion multiplied by a weighting function. He derived analytic
expressions for the weighting (and Kernel) functions as a function of
time and distance, and noted that the welltest permeability estimate is
influenced most strongly by permeabilities at a distance

=r kt ϕμc0.015( /( ))t . The Kernel function has been used as the basis for
performing welltest analysis in radially heterogeneous reservoirs
(Feitosa, 1993; Feitosa et al., 1994; Sangsoo, 1995; Sagar et al., 1995).
In addition, it has been used in many numerical well studies to provide
the well test response of various permeability realizations without
running the flow simulation (Gautier and Noetinger, 2004; Hamdi
et al., 2013; Hamdi, 2014). Analogous to Oliver's work, in this paper the
perturbation method is used to solve for the pressure response of an
infinite reservoir with variable permeability. Perturbation theory can
give an approximate description of a complex system by employing
some perturbations from the response of a solvable equivalent ideal
system (Wiesel, 2010). In addition, a study of the averaging process for
the CTR and CTP linear flow regime, including identification of the
region of the reservoir that influences the LFP estimates, and a speci-
fication of the relative contribution of the permeability of various re-
gions to the estimate of average LFP, is performed. LFP estimates are
shown to be the result of a weighted harmonic averaging of the per-
meabilities and fracture half-lengths of some reservoir volumes, similar
to the radial flow permeability estimates from the slope of a semilog
plot (Oliver, 1990). Comparison of the Weighting/Kernel functions (and
therefore the averaging process) between the CTR and CTP linear flow
sheds light into the DOI equations obtained for these two production
scenarios. Despite a number of research conducted on the topic (El-
Banbi and Wattenbarger, 1998; Nobakht and Clarkson, 2012a,b;
Behmanesh et al., 2015), the differences in DOI for these two end-
member operating conditions during transient linear flow have never
been adequately explained until now.

2. Mathematical development

The basic reservoir model and the element of symmetry considered
in this work is illustrated in Fig. 1. Fig. 1a shows the fractured hor-
izontal well stimulated in multiple fracturing stages, and Fig. 1b shows
the permeability enhancement around the hydraulic fracture. Based on
the physical consideration, it is reasonable to use the element of sym-
metry as shown in Fig. 1c. This is similar to the fractured well/reservoir
configuration used by Wattenbarger et al. (1998), Nobakht and
Clarkson (2012a,b) and Shahamat et al. (2015), which exhibits tran-
sient linear flow at early time. The difference here, however, is that the
reservoir permeability is assumed to vary with distance from the

hydraulic fracture according to a permeability distribution, k y( )D D . This
permeability distribution is meant to represent the situation where
permeability is elevated in the near fracture/wellbore region by varying
degrees, depending on the distance to the hydraulic fracture. Hummel
and Shapiro (2013) used microseismic data from the Barnett shale re-
servoir to demonstrate that the generation of hydraulic fractures leads
to a nonlinear permeability distribution in the SRV with the largest
permeability magnitudes occurring in regions closer to the wellbore.

The main purpose of this paper is to find the analytical solutions for
the pressure response of the fractured well model shown in Fig. 1 using
the non-uniform permeability distribution k y( )D D . Development of the
analytical solutions is based on the assumption of single-phase flow of a
slightly compressible fluid with negligible wellbore storage and skin
effects.

The dimensionless diffusion equation for the linear flow (Shahamat
et al., 2015) can be modified to account for variable permeability dis-
tribution. This is achieved through introduction of the dimensionless
permeability term k y( )D D in the following form:
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In Eq. (1), the permeability distribution function can be written as
the sum of a constant “average” permeability and a variation of the
constant value. In this analysis, we assume that the permeability var-
iation is much smaller in magnitude than the average permeability, that
is:

=
−
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D (2)

where f y( )D is the permeability-variation function and ε is a small real
number. It is demonstrated in the Applications Section that Eq. (2)
provides a simple form for the permeability distribution that is math-
ematically convenient and meaningful.

3. Solutions

If the permeability variation from the average value is small, per-
turbation theory can be applied to approximate the solutions for the
pressure at the wellbore by the sum of an infinite series of terms of
rapidly decreasing magnitude. Retaining the first two terms in the series
gives:

= + +p p εp O(ε )D D0 D1
2 (3)

Here the pD0 is the pressure response for a constant (average) perme-
ability reservoir that can be approximated by the square root of time
(Wattenbarger et al., 1998). Moreover, pD1 is the first perturbation to
the constant-permeability solution and is a function of the permeability
variation function, f y( )D .

In the following subsections, the analytical solutions of Eq. (1) for
CTR and CTP are obtained using Laplace transforms with subsequent
inversions to the time space, and a perturbation expansion in powers of
ε. Details of the derivations are given in Appendices A and B.

3.1. Constant terminal rate (CTR) production

The dimensionless parameters used for obtaining Eq. (1) in CTR
production, along with detailed derivation of the solution for the di-
mensionless pressure in Laplace domain, are given in Appendix A. In-
version of the solution into the real time domain results in the following
equation:

  ∫= −
∞

p πt ε f(y )G(y , t )dywD D
0

D D D D
(4)

where G y t( , )D D is the weighting function for the permeability dis-
tribution and is equal to:
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