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a b s t r a c t

One reason for observed reductions in the conductivity of hydraulic fractures is failure of the proppant
pack. Proppant deformation, crushing, or embedment can decrease the fracture width and conductivity.
In this paper, the continuity and momentum balance equations were fully coupled to simulate the
transient phenomena involving fluid flow through a deformable porous proppant pack. Porous media
displacement, water pressure, and gas pressure were derived as primary unknowns. The governing
equation was discretized using the finite element method and solved numerically. In this model, the
proppant pack and formation rocks were treated as two different types of continuous porous media (Biot
type). Proppant deformation, crushing, and embedment could be identified through the geomechanical
model, while the damage effects on gas/oil production would be studied through the fluid-flow model.
Analysis of proppant deformation and crushing was based on the proppant pack stressestrain behavior.
The displacement of the fracture-formation interface represented both the deformation of proppant and
rock solids around fracture surface. MohreCoulomb failure was used as the criterion for proppant
crushing. Effects of proppant damage were evaluated on proppant pack porosity and permeability. The
model can be applied generally in hydraulically fractured reservoirs with proper inputs. In this paper, we
used a fractured tight sand gas reservoir as a study case. The pressure distribution as well as proppant
pack deformation are illustrated in the paper. Proppant pack mechanical behavior was found to be
sensitive to the fluid flow pressure. Proppant near the wellbore has a higher likelihood of being crushed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Proppants, which are usually sand particles but can also be
synthetic ceramic material, are injected with fracturing fluid during
well stimulation treatments. The purpose is to hold the fracture
open after the high-pressure fluid is released to flow back to sur-
face. Under the in-situ stresses, proppant can deform, crush or
embed into the formation rock, which decreases the hydraulic
fracture width and conductivity (Gidley et al., 1995, Lacy et al.,
1997). In some cases, the loosely packed proppant can flow back
to surface. It is believed that the failure of proppant pack can result
in an early production decrease which is quite common in tight
sandstone and shale gas reservoirs.

Proppant damage is difficult to be quantified. Significant
amount of researches have been conducted on lab-based proppant
strength tests. Most of these results were obtained under ideal lab

conditions which are API Recommended Practice 19C (RP19C,
identical to ISO13803-2 standard). A ten inch long, one and a half
inch wide conductivity cell containing sandwiched “rock-prop-
pant-rock” samples is used to analyze proppant damage and frac-
ture conductivity loss. The lab test results can deviate from field
tests by one order of magnitude (Palisch et al., 2009). The lab tests
are time and money consuming, and not applicable in evaluating
proppant damage effects on reservoir scale. Traditional partially
coupled numerical models (Osholake et al., 2011) using analytical
or empirical correlations can not accurately describe the damage
mechanism. To fully quantify the effect of the proppant damage, a
fully coupled model is needed, in which the deformation of prop-
pant as well as the gas and water pressure are solved
simultaneously.

2. Governing equation

The purpose of using a fully coupled model is to assess how the
changes in pore pressure affect stresses in the reservoir and the

* Corresponding author.
E-mail address: jiahang.han@gmail.com (J. Han).

Contents lists available at ScienceDirect

Journal of Natural Gas Science and Engineering

journal homepage: www.elsevier .com/locate/ jngse

http://dx.doi.org/10.1016/j.jngse.2016.03.034
1875-5100/© 2016 Elsevier B.V. All rights reserved.

Journal of Natural Gas Science and Engineering 31 (2016) 546e554

Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:jiahang.han@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jngse.2016.03.034&domain=pdf
www.sciencedirect.com/science/journal/18755100
http://www.elsevier.com/locate/jngse
http://dx.doi.org/10.1016/j.jngse.2016.03.034
http://dx.doi.org/10.1016/j.jngse.2016.03.034
http://dx.doi.org/10.1016/j.jngse.2016.03.034


surrounding formation. Our specific goal is to explore how prop-
pant pack deforms, and the associated fracture conductivity losses.
The research focuses on the propped fracture conductivity and
treats the settled proppant as a proppant pack. Both the proppant
pack and formation rock are assumed to be linear poroelastic me-
dia. Effective stresses perturbations generate strain which can
affect the pore space of the solid media. And changes of pore space
volume can induce changes in the diffusivity in the fluid-flow
equation.

Mass balance equation for solid phase (superscripted by s) can
be expressed as the following equations.

vð1� fÞrs
vt

þ V,½ð1� fÞrsvs� ¼ 0 (1)

where r is the density; f is the porosity; v is the velocity, and t is
time. As the vector calculus identity holds,
V,ðrsVsÞ ¼ rs*V,vs þ V,rs*v

s. Carrying out the time derivatives,
neglecting the gradient of (1� f) rs, and dividing by rs, Eqn. (1)
becomes

1� f

rs
vrs

vt
� vf

vt
þ ð1� fÞV,vs ¼ 0 (2)

For the fluid phases (superscripted by p), the mass balance
equation can be expressed as:

vðfsprpÞ
vt

þ V,½fsprpvp� ¼ 0 (3)

Introducing relative acceleration (aps) and velocity concept (O.C.
Zienkiewicz, et al., 1999),

ap ¼ as þ aps

where the acceleration terms (a) can be defined from the linear
momentum balance equation

ras þ fswrwaws þ fsgrgags ¼ V,sþ rg (4)

r ¼ ð1� fÞrs þ fswrw þ fsgrg (5)

The relative fluid phase velocity can be defined accordingly

vp ¼ vs þ vps (6)

Then the modified Darcy equation can be

fspvps ¼ �kkrp

mp
½V,pp � rpðg � as � apsÞ� (7)

For the liquid phase, after dividing equation by spr
p, applying

the vector calculus identity, and neglecting V(fsprp), Eqn. (3)
becomes:

vf

vt
þ f

rp
vrp

vt
þ f

sp

vsp
vt

þ 1
sprp

V,ðfsprpvpsÞ þ fV,vs ¼ 0 (8)

The summation of Eqns. (2) and (8) will yield the mass balance
equation of the system:

1� f

rs
vrs

vt
þ V,vs þ f

rp
vrp

vt
þ f

sp

vsp
vt

þ 1
sprp

ðfsprpvpsÞ ¼ 0 (9)

In this case, the system is treated as isothermal. Thus the solid
density can be assumed to be determined on pressure and first
invariant of stress (Lewis and Schretler, 1998).

vrs

vt
¼ rs

1� f

�
ða� fÞ 1

KS

dsps

dt
� ð1� aÞV,vs

�
(10)

For multi-phase flow system, the pressure to the solid phase can
be concluded as (Hassanizadeh and Gray, 1993):

ps ¼
Xn
i¼1

pisi (11)

Accordingly the effective stress of the system can be expressed
as:

s
00 ¼ sþma

Xn
i¼1

pisi (12)

Assuming of solids' velocity are mainly due to its deformation
which is true for the settled particles, then

V,vs ¼ dε ¼ mTL
vu
vt

(13)

Put Equations (5), (7), (10), and (13) into (9), yields

ða� fÞ 1
KS

dsps

dt
þ amTL

vu
vt

þ f

rp
vrp

vt
þ n
sp

vsp
vt

þ 1
sprp�

rp
kkrp

mp
½ � Vpp þ rpðg � as � apsÞ�

�
¼ 0

(14)

Themodified continuity equation of the system (Eqn. (14) can be
further assigned to each fluid phase by taking density equation
(Eqn. (5) in to consideration.

Another governing equation for the system is the balance of
momentum equation in aspect of total stresses:

LTsþ rg ¼ 0 (15)

Where the L is the stress differential operator; s is the force
applied on solids as Eqn. (12); r is the density from Eqn. (5).

The primary unknowns for the governing equations (Eqns. (14)
and (15)) are displacements, fluid phase pressures. The equations
need initial pressure and deformation of the system. Boundary
conditions as specified stress and flux are also required. The gov-
erning equations are further discretized in Finite element method
way by weighting residues into zero over domain and boundary.

2.1. Stress sensitive permeability and porosity

A clear understanding of rock stress and its effect on perme-
ability and porosity is important in a coupled simulation where
fluid production causes a significant increase in the effective stress
within a reservoir. In this paper, the correlations we used to
investigate the porosity and permeability change would be
(Schutjens, and Hanssen, 2004)

Df ¼ εbðf0 � 1Þ
1� εb

(16)

εb is the strain which is the main unknown we solved in the mo-
mentum governing equation. f0 is the initial porosity. To further
evaluate the relationship between permeability and deformation,
we use the experimental relationship of CarmeneKozeny to model
the influence of porosity changes (due to deformation) on perme-
ability integrated with stress field. As we are focusing on the settled
proppant pack which can be similarly treated as a porous rock with
solids tightly aggregated. The CarmeneKozeny equation can
describe such a proppant pack under the assumption of linear
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