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A B S T R A C T

This article revisits the evaluation by a perturbation theory of the modification of the Rayleigh wave velocity
under a static loading varying with depth. Two derivations, that have been exposed in the past and presented as
comparable, are questioned. A new derivation of the perturbation formula is given by adapting Auld’s approach.
Validation with exact calculations is provided. The examples cover depth-varying static stress as well as depth-
varying third order elastic properties.

1. Introduction

The slight modification of sound wave velocities when the propa-
gation medium is statically stressed has been extensively studied in the
past [1,2]. This effect is known as the acoustoelastic effect. The possi-
bility of using it to monitor the state of residual stresses inside a ma-
terial has been widely considered, and numerous applications have
been developed in fields where either unwanted tensile stresses or de-
liberately generated compressive stresses play a major role on the
lifetime of mechanical components. Previous works covered virtually
all types of waves (bulk waves as well as surface or other guided
waves). Because the strains involved are small, perturbation theory has
been a dominant approach to predict the magnitude of the effect.

We shall in this work focus on the Rayleigh surface wave. This field
has taken benefit from other communities which were already involved
in studying the influence of depth-dependent texture on the dispersive
character of the Rayleigh wave. A milestone was Auld’s [3] perturba-
tion theory, which lays on reciprocity relationships under a first order
Born approximation (see Szabo [4] and Tittmann et al. [5] for early
examples of application). The first work to deal with depth-varying
loadings was probably that of Hirao et al. [6]. These authors used a
perturbation approach to derive a formula which predicts a frequency-
dependent behavior in the velocity of the Rayleigh wave, also providing
experimental evidence in the case of a stress growing with depth. A few
years later, Husson [7] addressed the same problem by using another
way to derive the perturbation formula, based on an adaptation of
Auld’s methodology. Ditri and Hongerholt [8] later corrected typo-
graphical errors. Both articles of Hirao et al. and of Husson are today
widely cited. Still, they do not agree.

This article is organized as follows. First, arguments are given to
prove that neither the formula derived by Hirao et al. nor Husson’s can
cover arbitrary profiles of loading, and steps in both demonstrations
referring to this fact are identified. Second, a new derivation of the
perturbation formula is given by adapting Auld’s approach. A general
formula is given, and then applied to an initially isotropic half space.
Finally, the several sets of formulas are compared numerically on di-
verse examples, together with a validation by an exact calculation.

2. Preliminary arguments

In what follows, εij
S refers to the static strain, k to the wavenumber,

x1 is the coordinate in the direction of propagation, x3 is the vertical
coordinate and the over-bar means a value at the surface ( =x 03 ).

The formula derived by Hirao et al. expresses the variation of ve-
locity of the Rayleigh wave vΔ R as a linear combination of

∂ ∂ε ε k ε k, / , /ii ii ii
S

3
S

3
2 S 2, and integrals of ε x( )ii

S
3 over the half-space weighted

by decreasing exponentials. The formula derived by Husson has some
common and some different features. It expresses the variation of ve-
locity as a linear combination of ε11

S and integrals of ε x( )ii
S

3 over the half-
space weighted by decreasing exponentials. In both cases, the presence
of terms that explicitly depend on the value at the surface of εij

S and its
first two derivatives is problematic. Indeed, if we consider a loading
which is located near the surface, i.e. which has a finite extent in depth,
then the integral terms can be shown to tend to zero at low frequencies.
The predicted low frequency behavior would then be of the form

= + +v β β k β kΔ / /R
(LF)

0 1 2
2, which has a non-null, potentially divergent

value for →k 0. This is in contradiction with the physical intuition that
for a localized loading the low frequency limit of the velocity should be
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only determined by the unmodified substrate. Therefore, both formulas
are restricted to some cases which exclude the low frequency limits of
localized profiles of loading.

The demonstration of Hirao et al. follows the strategy of first ob-
taining a perturbed solution to the wave equation. A wave field po-
tential F is decomposed into a zeroth order and a first order term, la-
belled = +F F F0 1. The differential equation satisfied by F1 has a
homogeneous part identical to the original wave equation, and an in-
homogeneous part involving the static stress field and F 0. By using the
plane waves of the unperturbed medium, a particular solution for F1 is
constructed. Then, F is inserted into the boundary condition and a
system is obtained whose determinant must vanish. This last step pro-
vides an explicit expression for the variation of velocity. The method,
which is standard and, in principle, correct, is however truly cumber-
some as it requires to, first, expand the inhomogeneous part of the
(fourth order) differential equation satisfied by F1, second, construct
explicitly a particular solution by integrating this inhomogeneous part
multiplied by products of the (four) linearly independent solutions, and
finally insert the whole expansion into the boundary condition which
involves several derivative operators. The expressions to deal with are
thus growing considerably at each step, and it would be a true challenge
to re-derive them to obtain an error-proof formula. Nevertheless, the
following mistake can be identified. Hirao et al. wrote the inertial term
in the wave equation μ V V/ T

2 2 instead of ρ V 2, to anticipate a further
division by μ. This is of no consequence for the unperturbed equation,
but apparently misled them to write the corresponding first order var-
iation ≡V V V z2Δ / T0 ,0

2 instead of +V V V2Δ / T0 ,0
2 = −ρ V μ z ε V VΔ / /NN T0

2
0
2

,0
2 .

Indeed, in the Ri expression (see Eq. (35) in [6]), the factors of z should
also be present multiplied by −r V V/ T0 0

2
,0

2 in the Li
(2) constants (see Eq.

(36) in [6]), which is not the case. Ri is used to generate the particular
solution F1, so this error impacts the final formula, even though, as will
be shown below, it seems to affect only slightly the predicted dispersion
in the particular case considered by Hirao et al. We did not try to find
further errors, nor to correct them, as we chose to follow a more
compact method to obtain the perturbation formula.

Husson’s demonstration is more attractive in the sense that it avoids
dealing explicitly with most of the perturbed terms, and results in
handling more compact expressions. By multiplying the perturbed and
unperturbed fields and integrating them over a well-chosen volume, the
variation of phase δΦ is expressed as an integral over the static stresses
weighted by the unperturbed field. However, Husson’s derivation is
done using the wave equation expressed in the material coordinate
system, i.e. coordinates which are deformed together with the material.
As a consequence, the phase shift defined this way is bound to the
deformation of the distances and must be transformed back into the
space coordinate system before the variation of velocity can be deduced
from it. This final step is presented as = −v v L L δ v ω LΔ / (Δ / ) Φ /( )R R R ,
with =L L εΔ / 11

S . It however happens to be a special case of a more
general formula, and is valid only if the strain is uniform. So, in prac-
tice, Husson’s formula is limited to uniform deformations, unless the
latter transformation is replaced by the general one. Notice that
Husson’s article adapted its methodology from an earlier work by
Husson and Kino [9] on bulk waves propagating in inhomogeneously
strained media. This latter article should therefore also be considered
carefully. To obtain a correct formula one strategy could be to derive
this corrective term. Another one could be to re-derive the perturbation
formula from the wave equation expressed in the space coordinate
system, in which the velocity is measured. We have done both, although
we decided to present the latter one in this article because it leads to
dispersion equations that can also be solved exactly using standard
numerical procedures. We will devote in the near future another article
to the derivation of the general form of the corrections. Meanwhile, as a
hint, we give here the general form of the relation between velocity
variation and phase shift expressed in the material coordinates. By
adapting Husson’s demonstration to the wave equation expressed in the
space coordinate system, one can define a phase shift δϕ such as

= −v v δϕ v ω LΔ / /( )R R R . By transforming some terms of δϕ into the ma-
terial coordinate system, one can obtain the difference between both
definitions of phase shifts:

∫ ∫− = − − ∂ − ∂δϕ δ ω
P

u V ω
P

u VΦ
2

d d ,
V N N

S
V ij j i

SK E
E (1)

in which the power flow P and the densities of kinetic energy
= ρ v1

2 0 0
2K and elastic energy = = ∂ ∗ σRe u, { . ( ) }NN ij i j

1
2 0 0E E E of the

dynamic field in the unperturbed medium have been defined. In the
case of a Rayleigh wave in an isotropic medium, one can show that only

11E and 33E are not null, with furthermore
∫ ∫ ∫= = − =V L P v V Vd / , d 0, ( ) d 0V R V V11 33E E K E , i.e. δ

− = −ϕ δ ε ω L vΦ ( / )R11
S if the static strain is homogeneous.

3. Basic equations

Let us consider a half space which mechanical properties are in-
variant in the planar x x( , )1 2 directions but may vary in the vertical x3
direction. In its natural state, i.e. in absence of any mechanical de-
formation, the medium is described by a mass density ρ x( )3 , a stiffness
tensor C x( )ijkl 3 and third order elastic moduliC x( )ijklmn 3 , and its surface is
isolated from any other medium. At first no assumption is made on the
symmetry of the medium, although isotropy will be assumed in the next
sections. A static stress = ∂σ x C u x( ) ( )ij ijkl k l

S
3

S
3 is applied and defines the

initial state. Except when specified, the coordinates and derivatives
refer to this state. Then, a mechanical wave of small additional am-
plitude is considered and defines the final state (referred to with su-
perscript f). We shall be interested in a wave guided by the surface and
propagating in the x1 direction.

Following Pao et al. [10], in the space coordinate system defined by
the initial state, the incremental displacement ui and the difference
between the final state second Piola-Kirchhoff and initial Cauchy stress
tensors = −T T σij ij ij

f S are related by the wave equation and generalized
Hooke’s law:

∂ + ∂ = ∂T σ u ρ u[ ] ,j ij jk k i t i
S S 2

2 (2)

= ∂T C u ,ij ijkl k l
S

(3)

with

= −∂ρ ρ u(1 ),m m
S S (4a)

= −∂ + ∂

+ ∂ + ∂

+ ∂ + ∂

C C u C u

C u C u

C u C u

(1 )
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ijml m k ijkm m l

S S S

S S

S S
(4b)

If ρS or Cijkl
S are discontinuous at some depth, then the displacement

and forces are continuous through this interface. This condition must be
written in the final set of coordinates, in which the wave slightly ad-
ditionally modifies the space. Let us refer to this incremental de-
formation gradient = ∂ = + ∂F x δ δ u( )ij j i ik kj j k

f f and to its determinant
=J Fdetf f . The Cauchy stress (or true stress) tensor σ f is related to Tf

through = −σ J F T F( )f f 1 f f t f . An oriented surface element is transformed
following = −s J sn F nd ( ) df f f t f 1 . Using these relations, and considering

=n (001)t , the elementary force through the interface expresses as:

= + + + ∂σ n s σ T σ T u sd {( ) ( ) }d .ij j i i k k k i
f f f

3
S

3 3
S

3 (5)

Remembering that σij
S is a static stress, which therefore satisfies

continuity without the presence of the incremental wave field, and
neglecting the term ∂T uk k i3 in Eq. (5), the following incremental
quantity

= + ∂∼T T σ ui i k k i3 3 3
S (6)

is continuous through the interface. At the surface, the stress-free
condition of natural state expresses as =∼

=T | 0i x3 03 .
We now suppose that the wave field is harmonic in time and in the
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