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a b s t r a c t

The high-order waveguide modal theory, usually used in electromagnetics and acoustics, is adopted to
investigate the propagation properties of shear horizontal waves in a periodic stubbed plate. Beyond
the sub-wavelength regime, higher-order modes are included to calculate the exact band structures
caused by the stubs. Theoretical solutions are obtained in a closed form, in which both the dynamic
governing equations and the boundary conditions are strictly satisfied. It is shown that the proposed
modelling approach exhibits good convergence and accuracy, in agreement with results obtained from
the finite element method. After a systematic investigation on the influence of the stub on the evolution
of the band structures, the so-called rainbow trapping phenomenon of SH waves is revealed and explored
in a graded stubbed plate with monotonously increasing height or width of the stubs, featuring an
obvious reduction of the group velocity and blocking of the wave propagation at different locations for
SH waves of different frequencies. The proposed model is expected to provide a useful theoretical tool
for the physical mechanism exploration, structural design and eventually system optimization to guide
various engineering applications of SH waves.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

As artificially structured composite materials, acoustic metama-
terials (AMs) and phononic crystals (PCs) exhibit anomalous phys-
ical properties that cannot be found in nature. Typical examples
include absolute band gaps (BGs) [1–3], directional BGs for unidi-
rectional transmissions [4], negative refractions for wave focusing
[5], zero-angle refraction for wave collimations [6] and so forth.
The diverse functionalities of the AMs and PCs are being explored
for various applications, such as cloaking [7], phase manipulation
[8], sound absorption [9] and active control [10,11]. The ultimate
aim is to be able to manipulate wave propagations through
structural design. Conventional PCs and AMs usually consist of
two-phase or multi-phase components to create an impedance
mismatch as a result of the differences in material properties.
Alternatively, the impedance mismatch can also be generated
through varying the structural shape or other geometric parame-
ters [12–14]. Acoustic black hole (ABH) structures with the struc-
tural thickness tailored in a particular form is a typical example,
in which bending waves can be controlled artificially [15,16].
Another example is the periodically corrugated structures made

of the same material in one piece [17], which provides a simple
and potential substitution for wave devices, since less design
parameters are involved. The advent of new manufacturing
capabilities such as 3D printing also makes it possible to fabricate
structural components with more complex geometries. Such
designs also avoid the joints betweenmulti-phase materials, which
are not desirable in manufacturing, assembly and applications.

For the control and the manipulation of elastic waves in a
geometry-induced inhomogeneous medium, the primary task is to
be able to accurately predict the band structures expressed in terms
of the frequency spectrums.Mathematically, it can be expressed in a
general form as G(f) = 0, in which G stands for an explicit or implicit
functionof the frequency f. From themechanical viewpoint, the gen-
eralized formofG(f) can be deducedby satisfying the dynamic equa-
tions and the corresponding Bloch theorem as the necessary
boundary conditions between the unit cells in a periodic structure.
However, mathematically, the full dynamic equations describing
the elastic wave propagation in solids are governed by the displace-
ment vector, in which the inherent mode coupling needs to be con-
sidered. This creates a tremendous challenge for the establishment
of the theoretical model allowing for analytical solutions. Hence,
most investigations on elastic waves in AMs and PCs have been
based on numerical simulations and experiments [12,13,18].
Theoretically, the band structures caused by geometry-induced
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mismatched impedance can be calculated via the revised plane-
wave-expansionmethod [16,19,20], in which virtual vacuum layers
need to be added in order to satisfy the traction-free surfaces over
the structural portion where geometrical changes take place. In so
doing, solutions depend on the thickness of the vacuum layers,
and the convergence of the solution is sometimes rather poor.
Besides, homogenizationmethods [21,22] can also be used to obtain
the band structure through calculating the effective constitutive
parameters of the complexmaterials, which is known as an efficient
tool only for long wavelength approximation. Therefore, theoretical
or semi-analyticalmodels, capable of accurately describing the elas-
ticwavepropagation inAMsandPCs, arehighlydesirable. Thismoti-
vates the present contribution.

Inspired by works in electromagnetics and acoustics [23–26],
the high-order waveguide modal theory is utilized to establish a
theoretical model on the shear horizontal (SH) wave propagation
in a periodic stubbed plate. The model allows for an analytical
solution, in which the Bloch theorem is included automatically,
which provides much convenience for the mathematical deriva-
tion. In the proposed model, higher-order modes are included to
get the exact band structures caused by the stubs. The proposed
model and the solution show fast convergence by using a small
number of terms and high accuracy through comparisons with
the result from the finite element method (FEM). Numerical anal-
yses reveal the so-called rainbow trapping phenomenon of SH
wave in a graded stubbed plate with monotonously increasing
height or width of the stubs, featuring an obvious reduction of
the group velocity and blocking of wave propagation at different
locations for SH waves of different frequencies.

2. The high-order waveguide mode theory

Consider a periodic stubbed plate with two different additional
partial stubs on its upper and bottom surfaces. The plate is
assumed unbounded in the x3 direction, and only a cross section
of the unit cell from the stubbed plate is shown in Fig. 1. For con-
venience, the inhomogeneous plate is divided into three homoge-
neous regions. Region I is the middle flat plate between the two
stubs, whose thickness and periodicity are denoted by 2h and l,
respectively. Regions II and III correspond to the upper and bottom
stubs, occupying the region jx2j 6 0:5wup and jx2j 6 0:5wdown and
having a height of dup and ddown, respectively. When a SH wave
travels in the inhomogeneous plate, its propagation properties
are altered by the geometry-induced mismatched impedance,
which will be the focus of the analyses.

The dynamic equation governing the SH waves only involves a
displacement component in x3 direction u3 ¼ uðx1; x2Þ as
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 !
¼ q
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; ð1Þ

in which l and q are, respectively, the shear modulus and mass
density, and t is the time. Given an incident harmonic SH plane
wave with an angular frequency x in the plate, the wave field in
the middle plate denoted by Region I can be expressed as [23–27]

u Ið Þ ¼
X1
c¼�1

Ac cos k1;cx1
� �þ Bc sin k1;cx1

� �� �
exp ik2;cx2

� �
; ð2Þ

in which Ac and Bc are the coefficients to be determined and the
common term, expðixtÞ, has been omitted for brevity. Here, the
incident wave field is dropped in Eq. (2), since the dispersion rela-
tion, instead of forced vibration, is of the primary concern. As a mat-
ter of fact, Eq. (2) can be regarded as the diffraction field caused by
the stubs, which is analogue to electromagnetics and acoustics. The
eventual inclusion of the incident wave field in Eq. (2) allows the
calculation of the reflection and transition coefficients in photonics
and phononics [23–26], in which 0-order waveguide mode is usu-
ally applied for the sub-wavelength regime. However, beyond the
sub-wavelength regime, sufficient higher-order modes should be
included in Eq. (2) in order to exactly describe the wave propaga-

tion properties of the SH waves. k1;c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2SH0
� k22;c

r
stands for the

wave number in x1 direction with the bulk velocity cSH0 ¼
ffiffiffi
l
q

q
.

Meanwhile, considering the Bloch theory, the c-order diffraction
wave vector in x2 direction can be denoted by k2;c ¼ kþ c�2p

l with k
ranging from �p=l to p=l in the irreducible Brillouin zone [27,28].
Based on the solution, the shear stress component can be obtained
as

T Ið Þ
31 ¼

X1
c¼�1

lk1;c½�Ac sin k1;cx1
� �þ Bc cos k1;cx1

� �� exp ik2;cx2
� �

: ð3Þ

The displacement of the SH wave can be expressed by virtue of
trigonometric function expansion technique [27,29]. For the upper
and bottom stubs, the displacement fields can be written as

u IIð Þ ¼
X1

n¼0;1;2

Cn eiq
up
n hþdup�x1ð Þ þ e�iqupn hþdup�x1ð Þh i

cos aup
n x2 þ 0:5wupð Þ� �

ð4Þ

u IIIð Þ ¼
X1

m¼0;1;2

Dm eiq
down
m hþddownþx1ð Þ þ e�iqdown

m hþddownþx1ð Þh i
� cos adown

m x2 þ 0:5wdown� �� �
; ð5Þ

where Cn and Dm are the coefficients to be determined. aup
n ¼ np

wup and
adown
m ¼ mp

wdown are the wave numbers in x2 direction for the upper and
bottom stubs, respectively. Different m and n stand for different
modes, symmetrical when n ¼ m ¼ 0;2;4; . . . and anti-
symmetrical when n ¼ m ¼ 1;3;5; . . .. Actually, the expressions of
u(II) and u(III) embrace the principle of the modal superposition
method. It should be noted that the traction free boundary condi-

tions T IIð Þ
32 ¼ 0 at x2 ¼ �0:5wup and T IIIð Þ

32 ¼ 0 at x2 ¼ �0:5wdown are
automatically satisfied in this case. The wave numbers in the upper
and the bottom stubs in x1 direction can be obtained as

qup
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
SH0

� aup
nð Þ2

r
and qdown

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
SH0

� adown
m

� �2r
by ensuring that

Eqs. (4) and (5) satisfy the dynamic governing Eq. (1). Correspond-
ingly, the stress components can be obtained asFig. 1. Scheme of a unit cell from a periodic stubbed plate.
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