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a b s t r a c t

Conversion of evanescent shear horizontal (SH) guided waves into propagating is presented in this paper.
The conversion is exemplified by a time-harmonic SH evanescent displacement prescribed on a narrow
aperture at an edge of a semi-infinite isotropic plate. The conversion efficiency in terms of the amplitude
of the propagating SH mode converted from evanescent can be expressed in a very simple compact form.
The magnitude of the conversion efficiency can be quantified through a derived semi-analytical form
based on the complex reciprocity theorem in conjunction with a two-dimensional (2-D) finite element
analysis (FEA). Through power conversion analysis, it can be shown that the power flow generated into
the plate due to evanescent incident is complex valued. It is theoretically proved that the real part of the
complex power flow is associated with the propagating SH modes, while the imaginary part is confined
due to the evanescent modes at the plate edge. The conversion efficiency and converted modes are
dependent on the geometric configuration of the aperture as well as the selection of the excitation
frequency.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Wave propagation in isotropic plates can be classified as two
types of wave motions: plane strain and antiplane shear motions,
where the plane strain motions corresponding to the well-known
Lamb waves which are coupled longitudinal and shear vertical
waves and the antiplane shear represents shear horizontal (SH)
guided waves. SH waves are the simplest guided waves in plates,
propagating normal to the plane of wave propagation with particle
motion in the horizontal plane. A complete dispersion curves
including pure imaginary and real wavenumbers of SH guided
waves in plates can be easily determined analytically [1]. The SH
waves with pure imaginary wavenumbers which exhibit exponen-
tially decay and thus are called non-propagating or evanescent SH
waves, while propagating SH waves have real wavenumbers.

Because of the unique capabilities of long-range and through-
the-thickness interrogation of structures, guided wave based
damage detection techniques have been widely used in plate-like
structures [2–6], for non-destructive inspection and structural
health monitoring. These guided wave modes which interact with
defects or different geometric features may generate various wave

modes because of mode conversion [7]. To understand the
conversion process and quantitatively describe the conversion is
essential for reliable damage detection. In addition, it has been
known that the reflection of propagating guided waves from the
free edge of a plate is accompanied by mode conversion of both
propagating and evanescent guided waves, arisen in order to satisfy
the traction-free boundary conditions. These localized non-
propagating evanescent modes can solely exist in the close proxim-
ity of the plate edge, discovered by Torvik [8]. After his pioneer
work, many works [9–14] were dedicated to study the propagating
Lamb waves reflection/scattering from the free end or structural
discontinuities in the plate. The interaction of propagating SH
guided waves with various structural discontinuities in plates,
e.g., free boundary, notch and crack, has been studied by many
researchers [15–19]. Recently, Shen and Victor [20] studied the
mode conversion of propagating Lamb waves and SH waves exten-
sively. In the literature, these evanescent SH guided waves were
only considered when studying the mode conversion between
propagating guided waves using normal mode superpositionmeth-
ods [21,22] in order to obtain an accurate wavefield distribution
around structural discontinuities. Although evanescent SH guided
waves decay very rapidly, they prevail locally in the near field
and may still be converted into propagating waves as they interact
with the free boundaries of defects. Therefore, it is of great interest
to investigate the conversion of evanescent SH guided waves into
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propagating or vice versa. Retrieving the information concealed in
these evanescent waves from converted propagating SH guided
waves may provide additional information with respect to the geo-
metric discontinuities or damage. The conversion of evanescent
Lamb waves into propagating in plates has been recently demon-
strated by Yan and Yuan [23] where the conversion of evanescent
into propagating waves was quantitatively investigated.

In this study, a semi-analytical method is adopted to investigate
the mode conversion as evanescent SH wave is incident through
narrow apertures at an edge of a semi-infinite isotropic plate. Char-
acteristics of SH guided waves are presented on the basis of the
complex dispersion curves. Since SH wave exhibits a much simpler
analytical solution comparing with Lamb wave, the power flow for
propagating and evanescent SH mode is thereby analytically deter-
mined. Conversion criterion is then discussed to understand the
conversion process and the conversion behavior is numerically
modeled by solving a partial differential equation directly with
the aid of a two-dimensional finite element analysis (FEA). In addi-
tion, the amplitude of the converted propagating SH mode is
obtained in a very concise form by employing the complex
reciprocity theorem in conjunction with the FEA. Finally, the con-
version efficiency of converting evanescent into propagating SH
guided waves are quantitatively determined to unveil the under-
line physics of the conversion.

2. Propagating and evanescent SH guided waves in isotropic
plates

2.1. Dispersion relations

In an isotropic plate with surfaces normal to z direction, the SH
wave polarized along y direction with displacement u alone and
the propagation direction is here defined as x. The normalized dis-
persion relation for SH guided wave can be simply derived [1] and
an analytical form is expressed in terms of non-dimensional vari-
ables as

�k2 ¼ �x2 �m2 ð1Þ

where �x ¼ xh=ðpcTÞ, �k ¼ kh=p and cT ¼ ffiffiffiffiffiffiffiffiffi
l=q

p
is the shear velocity,

m = 0, 2, 4, . . . for symmetric wave modes, and m = 1, 3, 5, . . . for
antisymmetric wave modes. The group velocity of SH guided wave
can be readily obtained as

�cg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

�x

� �2
r

ð2Þ

The cutoff frequency can be readily derived by setting �k ¼ 0,
leading to

�xc ¼ m ð3Þ
The displacements for SH waves for each mth mode can be

derived as

umðx; z; tÞ ¼ amvmðzÞeiðkmx�xtÞ ð4Þ
where am is the amplitude and

vmðzÞ ¼ cosðmp�zþ cÞ ð5Þ
where c = 0 or p/2 represents symmetric or antisymmetric wave
modes, respectively. And �z ¼ z=h:

The two shear stress components for each mth mode can be
obtained as

smx
smz

� �
¼ aml

ikm
qm

� �
vmðzÞeiðkmx�xtÞ ð6Þ

and q2
m ¼ ðx=cTÞ2 � k2m.

2.2. Reciprocity relation and power flow

The complex reciprocity relation for time-harmonic functions in
integral form is given as [21]Z
s
ðv�

2 � r1 þ v1 � r�
2Þ � ndS ¼ �

Z
V
ðv�

2 � f1 þ v1 � f�2ÞdV ð7Þ

where n is the surface outward normal, [v1, r1, f1] and [v2, r2, f2] are
velocities, stresses and body forces for wavefields 1 and 2, ⁄ denotes
the complex conjugate.

The domain for applying the complex reciprocity relations (Eq.
(7)) for both wavefields is considered from incident input field,
say x = 0 to an arbitrary x, �h/2 � z � h/2. Since the top and bottom
surfaces (z = ±h/2) of the plate are traction-free, the surface inte-
grations at z = ±h/2 in the complex reciprocity relation disappear.
After substituting displacements and stresses components for SH
waves into Eq. (7), and setting the body force terms to be zero,
yields the following simplified relation

4Pmn½eiðkm�k�nÞx � 1� ¼ 0 ð8Þ

where

Pmn ¼ �1
4

Z h=2

�h=2
½v�

nðzÞ � rmðzÞ þ vmðzÞ � r�
nðzÞ� � nxdz ð9Þ

The orthogonality relation gives

Pmn ¼ 0 ðkm–k�nÞ ð10Þ
For a given SH mode passing through any arbitrary position x,

the power flow through the surface per unit width can be given
by [21]

Pm ¼ �1
2

Z h=2

�h=2
½v�

mðzÞ � rmðzÞ� � nxdz ð11Þ

By letting the nth mode in Eq. (8) satisfying km ¼ k�n to be m⁄,
and combining Eq. (7), Eq. (11) can be written as

Pm ¼ Pmm� ð12Þ
If the mth mode is a propagating mode with real wavenumbers,

then m⁄ =m, which indicates that the propagating mode m radiat-
ing energy by interacting only with itself but not with any other
modes. If the mth mode is an evanescent mode with pure imagi-
nary wavenumber, i.e., km ¼ k�m� , the non-propagating modes m
and m⁄ decay in the ± x directions, respectively. This implies that
evanescent SH mode can only transport energy when it interacts
with an evanescent mode decaying in the opposite direction.

Therefore, for propagating SH wave, the power flow passing
through any arbitrary position x can be determined analytically
from Eq. (11) as

Pm ¼ 1
4
lxhkmr jamj2 ¼ 1

4
qx2cðmÞ

g hjamj2 ð13Þ

where kmr denotes real wavenumber. Similarly, the power flow for
evanescent SH wave

Pm ¼ 1
4
ilxhkmi jamj2e�2kmi x ð14Þ

where kmi represents imaginary wavenumber. From Eq. (14), it is
obvious that the power flow for evanescent SH modes is location
dependent and exponentially decays as it propagates out. Although
evanescent SH mode itself cannot transport energy, the pure imag-
inary power flow stands for the reactive power which cannot be
consumed and is stored in the plate.
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