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a b s t r a c t

The numerical study is performed of the harmonic Rayleigh wave scattering in a composite structure con-
structed from two elastically isotropic 90�-wedges. These wedges are in contact along one pair of their
faces. It is assumed that either the perfectly sliding contact or the perfectly rigid one is realized. The other
pair of faces forms a plane border between the resulting bi-material wedge and the exterior half-infinite
space occupied by vacuum. The finite element method is used. The perfectly matched layer spatially con-
fines the computational domain. The dependences of the reflection and transmission coefficients of the
Rayleigh wave on the angle of incidence, the Poisson ratio and the type of contact are obtained and ana-
lyzed for different combinations of materials. The behavior of the coefficient of the Rayleigh wave con-
version into the interfacial wave which may exist on the internal boundary of the structure is also
investigated. A number of relations between the coefficients of conversion are derived from symmetry
considerations for structures with sliding contact and composed of identical isotropic materials.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of the elastic wave reflection and refraction at the
interface between two media is one of the classical areas of phys-
ical acoustics. Currently comprehensive theoretical and experi-
mental investigations are performed of bulk wave reflection/
refraction phenomena [1–5]. On the one hand, such an interest is
stipulated by the fact that it is the bulk wave transmission across
interfaces that one has to deal with in practice most often, in par-
ticular, when employing the ultrasound for non-destructive testing
of materials [6]. On the other hand, a significant progress in the
understanding of basic properties of the bulk wave reflection/
refraction is due to a relative simplicity of solving relevant
boundary-value problems. First of all, we bear in mind derivation
and analysis of the reflection and transmission coefficients for
plane harmonic waves at plane interfaces between half-infinite
media or plates [1–6]. These coefficients can be derived analyti-
cally in elastically isotropic media. In crystals, the anisotropy com-
monly does not permit one to calculate explicitly the conversion

coefficients in terms of the material constants and the angle of inci-
dence, except for certain symmetric geometries of propagation.
Nevertheless it appears possible to analyze the behavior of these
coefficients in the neighborhood of some critical angles of inci-
dence, such as angles corresponding to the excitation of leaky
waves as well as at quasi normal incidence in piezoelectrics [7–
14]. The particularity of the latter case is related with the occur-
rence of quasi-static electric fields.

If analytical solutions are not available, then the conversion
coefficients can be computed numerically in a fairly simple way.
Finding solutions of bulk wave propagation problems in layered
structures markedly simplifies when employing the so-called
transfer-matrix in combination with special methods which allow
the removal of instabilities occurring in numerical computations
when the layer thickness exceeds a few wavelengths [15–22]. In
some cases the use of transfer-matrix methods offers a possibility
of transparently deriving and analyzing analytic expressions for
the bulk wave reflection and transmission coefficients in layered
media, e.g. [23–26].

The situation is quite different regarding surface acoustic
waves. Any considerations of the surface wave transmission from
one surface to the neighboring surface of the same substrate or
from one medium to another reduce to solving surface wave
scattering problems in homogeneous or inhomogeneous,
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e.g., bi-material, wedges and wedgelike structures. This class of
boundary-value problems does not admit fully analytical solutions
even for isotropic solids. However, approximate analytic expres-
sions of the reflection and transmission coefficients are obtained
for isotropic homogeneous wedges [27–29]. The generation of bulk
waves is either totally neglected or not fully taken into account.
Under similar assumption approximate expressions are also
derived for the shear polarized Bleustein-Gulyaev wave in a 90�
piezoelectric wedge of symmetry 6 mm [30,31].

There are several methods of solving exactly the Rayleigh wave
scattering problem in isotropic wedges. One of them uses the free-
space Green’s function for displacement fields [32–37]. After a
chain of involved evaluations a set of integral equations is obtained
and solved numerically in order to find the reflection coefficient
from the wedge apex and the transmission coefficient determining
the amplitude of the Rayleigh wave transmitted on the second face
of the wedge. The second method is based on the Sommerfeld-
Malyuzhinets technique [38–43]. The initial boundary-value prob-
lem is eventually reduced to an integral equation which again is
solved numerically. The reflection and transmission coefficients
can also be found by the boundary element method [44].

The above-listed three approaches imply preliminary transfor-
mations of the wave equations. A different group of methods con-
sists in numerically solving directly the boundary-value problem
without any transformations of the wave equations. Following such
a line the reflection and transmission coefficients in isotropic homo-
geneouswedgeswere computedby thefinite differencemethod and
by a mixed finite element/finite difference method [45,46].

In our paper [47] we simulated the Rayleigh wave scattering in
isotropic 90� homogeneous wedges using the finite element
method (FEM). It was assumed that the Rayleigh wave is harmonic,
i.e. computations were performed in frequency domain. The com-
putational domain was spatially confined by the so-called perfectly
matched layer (PML) [48–53]. Our main interest was in investigat-
ing the scattering at the rounded apex of the wedge as well as in
the case where a thin layer of foreign material is deposited on
the face which scatters the Rayleigh wave. However, in order to
validate our approach, we also computed the reflection and trans-
mission coefficients in wedges with 90� apex angle without any
rounding, since it is the case studied in Refs. [32–46]. Our results
are in a good agreement with the results obtained in those works.

Subsequently we investigated by FEM the scattering of har-
monic surface wave from 90�-edges of anisotropic piezoelectric
substrates [54]. In particular, it was shown that in anisotropic sub-
strate surface waves are generally scattered off differently at the
right-hand border and the left-hand border. The difference
between the conversion coefficients can be significant.

The surface wave scattering in a single homogeneous wedge
with free faces can be viewed as a counterpart of the bulk wave
reflection from the mechanically free boundary of half-infinite sub-
strates. The bulk wave reflection at the interface between two elas-
tic media can be associated with the surface wave scattering in a
inhomogeneous wedge composed of two different wedges by join-
ing them along a pair of faces. The Rayleigh wave scattering in bi-
material isotropic wedges has earlier been studied in Refs. [55,56]
on the basis of the Sommerfeld-Malyuzhinets technique. The nor-
mal incidence on the wedge apex is considered. From the solution
of the appropriate integral equations the dependence is obtained of
the conversion coefficients, including the coefficient of excitation
of the Stoneley wave, on the value of the opening angles of each
wedges constituting the composite structure.

In the present paper we model by FEM the Rayleigh wave scat-
tering in a bi-material wedge constructed of two 90� elastically iso-
tropic wedges. We want to investigate the dependence of the
conversion coefficients on the angle of incidence of the Rayleigh
wave and on the existence or non-existence of an interfacial wave

at the interface between the wedges. Two types of the contact at
the interwedge border will be considered, namely, the perfect rigid
and the perfect sliding contacts. We also repeat some of computa-
tions carried out in Ref. [56] (see Appendix).

2. Statement of the problem

Let an inhomogeneous substrate be composed of two elastically
isotropic quarter-spaces (domains 1 and 2 in Fig. 1). These quarter-
spaces are in an acoustic contact along their vertical faces. Above
the substrate is vacuum. The harmonic Rayleigh wave

uinðr; tÞ ¼ AinðzÞeikinðx cos hþy sin h�v intÞ; ð1Þ
is incident from domain 1 on domain 2 along the direction making
an angle h with the coordinate x-axis. The symbols kin and v in stand
for the wavenumber and the velocity, respectively. The vector AinðzÞ
specifies the dependence of the Rayleigh wave displacement on the
z-coordinate.

At the border between domains 1 and 2 the incident wave
transforms into the reflected Rayleigh wave propagating in domain
1 and into the transmitted Rayleigh wave propagating on the hor-
izontal surface of domain 2. In analogy with bulk waves, the trans-
mitted wave occurs if the angle h is smaller than the critical angle
ho ¼ arcsinðv in=v trÞ, where v tr is the Rayleigh wave velocity in
domain 2. In addition, bulk waves are generated and an interfacial
wave can occur at the interwedge border. This interfacial wave
may or may not exist depending on the material constants and
the type of the contact.

We assume that the contact is either perfectly rigid or perfectly
sliding. It can be proved that not more than 1 interfacial wave
exists on the rigid contact and not more than 2 slip waves exist
on the sliding contact between two solids not possessing piezo-
electric or piezomagnetic properties, the second slip wave occur-
ring only in the case of anisotropic media1[57–59].

Our aim is to compute the reflection coefficient R, the transmis-
sion coefficient T, and the coefficient of conversion into the interfa-
cial wave Tiaw. These coefficients are defined as the ratios of the
normal displacement of the appropriate wave at the relevant
boundary to the z-component Ain;z of the displacement Ain

(jAinj ¼ 1) of the Rayleigh wave at the boundary z ¼ 0.

3. General description of the solution procedure

First of all the scattered fields uscðr; tÞ and wscðr; tÞ in domains 1
and 2, respectively, are to be found by FEM.2 The FEM functional is
written in such a way that it corresponds to the wave equations for
the total displacement utot ¼ usc þ uin and the displacement wsc in
domain 1 and 2, respectively:

$ � r̂tot ¼ �qð1Þx2utot; ð2Þ
$ � r̂w ¼ �qð2Þx2wsc; ð3Þ
where x ¼ v inkin is the frequency,

r̂tot ¼ ĉð1Þ$ � utot; r̂w ¼ ĉð2Þ$ �wsc ð4Þ
are the mechanical stress tensors, ĉð1;2Þ and qð1;2Þ are the elastic
moduli and the density of domain 1 and 2, respectively. Since all
fields depend on the y-coordinate as exp½ikiny sin h�, the space
derivative @=@y is replaced with ikin sin h. Therefore only the depen-

1 At most 2 interfacial waves exist at the rigid contact and at most 3 waves exist at
the sliding contact if the solids are piezoelectrics (piezomagnetics) or possess
simultaneously piezolectric and piezomagnetic properties [60–63]. A vacuum gap
separating two piezoactive crystals allows 4 branches of interfacial waves [61].

2 Our program is written on the basis of the COMSOL Multiphysics and MATLAB
packages.
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