
A note on formulas for the Rayleigh wave speed in elastic solids

G. Sudheer a,⇑, M. Hemanth Lakshmi b, Y. Vasudeva Rao c

aDepartment of Mathematics, GVP College of Engineering for Women, Visakhapatnam, 530048, India
bDepartment of Mathematics, GVP College for Degree and PG Courses, Visakhapatnam 530017, India
c School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar, India

a r t i c l e i n f o

Article history:
Received 30 May 2016
Received in revised form 26 August 2016
Accepted 29 August 2016
Available online 31 August 2016

Keywords:
Rayleigh waves
Isotropic
Monoclinic
Lagrange
Approximate
Wave speed

a b s t r a c t

In the present paper, new analytical, numerical and approximate methods have been presented for the
determination of Rayleigh wave speed in isotropic and anisotropic media. The Lagrange’s method is used
to provide exact expression for the roots of the secular equation for Rayleigh waves in isotropic media.
Then, a simple non-iterative type quadrature method is used to numerically determine the Rayleigh wave
speed in isotropic and anisotropic media. Further, an approximate method is presented to determine the
velocity of Rayleigh waves. The discrete least square approximation on Chebyshev – Gauss - Lobatto
nodes is suggested to transform secular equations to quadratic equations, thereby, providing improved
approximations to the Rayleigh wave speed. The analysis is complemented with numerical examples.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Elastic surface waves in isotropic solids, discovered by Lord
Rayleigh [1], has been studied extensively in recent years, due to
its wide range of applications in seismology, acoustics, geophysics,
telecommunications and material science to name a few [2]. The
technological applications of Rayleigh waves in electronic devices
such as filters, resonators, delay lines etc. [3] has had far-
reaching effects on many modern gadgets. The propagation condi-
tion for the existence of Rayleigh waves in an elastic half-space
results in the secular equation for Rayleigh waves (Rayleigh equa-
tion) and its solution gives the Rayleigh wave speed [4]. Since the
Green’s function for many elastodynamic problems for a half-space
requires the solution of the Rayleigh equation, formulas for the
Rayleigh wave speed in various elastic media is of great theoretical
and practical interest [5]. The Rayleigh wave equation is a cubic
equation in the squared wave speed and its significance has
attracted researchers to find exact, approximate analytical expres-
sion for the Rayleigh wave speed.

Rahman and Barber [6] first provided an exact expression for
the roots of the Rayleigh equation in isotropic solids using the the-
ory of cubic equations (Cardano’s method). Since that time, a num-
ber of authors have sought to develop alternative expressions for
the Rayleigh wave speed [7]. Nkemzi [4] provided an alternative

exact expression for the Rayleigh wave speed using the theory of
Cauchy Integrals, but Malischewsky [8] observed some misprints
in [4] and obtained a formula for the wave speed using the advan-
tages of computer algebra and Cardano’s formula. Vinh and Ogden
[9] obtained a formula solely based on the theory of cubic equa-
tions and have explained the Malischewsky formula [8]. Malis-
chewsky Auning [10] obtained a formula for the Rayleigh wave
velocity without the signum function but with an irrational term
in the denominator and has shown its equivalence with the for-
mula in [8]. Royer [11], used the root locus to provide a simple
means for investigating the behaviour of the roots of the secular
equation. Nkemzi [12], used a factorization technique based on
the Reimann problem to derive a simple formula for the speed of
Rayleigh waves. More recently, Liu and Fan [13] utilized a form
of Cardano’s formula (referred to in [13] as Shejun’s formula) to
obtained a new formula for the wave speed.

Considering anisotropic elastic solids, we note that Stoneley
[14] studied the propagation of surface waves in an elastic medium
with orthorhombic symmetry. The Rayleigh waves propagating in
principal directions on free surfaces that are principal planes were
studied. Royer and Dieulesaint [15] established that the secular
equation for surface waves in orthorhombic crystals derived by
Sveklo [16] could account for 16 different crystal configurations.
Destrade [17] derived an explicit secular equation for surface
acoustic waves in monoclinic elastic crystals using the method of
first integrals. The speed of subsonic surface waves was then com-
puted for 12 specific monoclinic crystals. Later Destrade [18]
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obtained explicit secular equations for surface waves propagating
in any direction of the plane of symmetry using two different
methods. Ogden and Vinh [5] obtained the secular equation for
Rayleigh wave speed in an incompressible orthotropic elastic solid
in a form that does not admit spurious solutions. Vinh and Ogden
[19,20] obtained explicit formulas for the speed of Rayleigh waves
in orthotropic compressible elastic materials using the theory of
cubic equations. Each formula obtained is expressed as a continu-
ous function of three dimensional material parameters.

In almost all the closed form expressions obtained for the Ray-
leigh wave velocity in isotropic and anisotropic media, the expres-
sions are cumbersome. Recognizing the need for an approximate
analytical expression for the velocity, which is simple and accurate
for practical purposes, some approximate analytical expressions
have been proposed in literature. One of the earliest approximate
expression in this regard was proposed by Bergmann [21] which
approximate the Rayleigh wave speed very well for materials with
Poisson’s ratio ðmÞ in the range [0,0.5]. Later Brekhovskikh and
Godin [22], Briggs [23], Nesvijski [24] developed approximate for-
mulas which were found to be good for positive values of m. Malis-
chewsky [25] proposed an approximate formula that was found to
approximate the exact value of Rayleigh wave velocity for both
positive and negative values of m. However, his approach at arriving
at the formula is considered to be heuristic and Rahman and
Mitchelitsch [26] used the Lanczos approximation to develop an
alternative approximate analytical expression for the Rayleigh
wave speed in isotropic solids. This prompted Vinh and Malis-
chewsky [27] to provide an explanation for the approximation pro-
vided in [25] using the principle of least squares. The priniciple was
further used in [28] to obtain an improved approximation of Berg-
mann’s form for the squared Rayleigh wave velocity. Royer and
Clorennec [29] using a bilinear function derived a simple expres-
sion which gives an approximate value for the wave speed in iso-
tropic solids. Vinh and Malischewsky [2] used the principle of
least square to introduce an approach for finding analytical
approximate formulas for the Rayleigh wave velocity in isotropic
and anisotropic solids. Later the approach was used by them in
[30] to obtain some improved approximations for the Rayleigh
wave velocity in isotropic solids that are more accurate than the
ones of the same form proposed in [20–23]. The approach was fur-
ther extended in [31] to obtain improved approximation for the
wave velocity in isotropic solids for Poisson ratio in the interval
[�1,0.5]. Li [32] used the least square approach to develop an alter-
native approach for obtaining approximate analytical expressions
for the velocity of Rayleigh waves. More recently Spathis [7] used
Pade’s approximants to estimate the Rayleigh wave speed.

From the literature surveyed in the foregoing, we observe that
there are strikingly four aspects involved in the studies under-
taken. The primary concern being the derivation of the secular
equation for Rayleigh waves in elastic media [1,2,5,14–18]. The
second aspect concerns solving the secular equation to obtain an
explicit analytic expression for the speed of the propagating wave
[4,6,8,9,12,13,19,20]. The third is concerned with techniques that
enable one to obtain approximate expressions for the Rayleigh
wave speed that are as good as the exact ones [21–31]. The fourth
one concerns the numerical techniques adopted to solve the secu-
lar equation to obtain the value of Rayleigh wave speed in isotropic
and anisotropic elastic media. The fourth aspect is considered to be
simple and as such has not been considered explicitly by previous
authors. However we hope, simple techniques as expounded in this
paper, would be a welcome addition to the literature.

In the present work, we consider three aspects. In the first part,
analytical expressions for the roots of the secular equation of Ray-
leigh waves are obtained using the Lagrange’s method. Secondly,
we present a completely numerical approach which is a non-
iterative quadrature type method for finding a simple root of the

secular equation for Rayleigh waves in isotropic and anisotropic
elastic solids. In the third instance, we perform a discrete least
squares approximation on Chebyshev- Gauss – Lobatto (CGL)
nodes to obtain approximate formulas for the Rayleigh wave veloc-
ity in elastic solids.

2. Theory

2.1. Isotropic solids

Rayleigh [1], first demonstrated the existence of Rayleigh waves
and has shown that these waves are non-dispersive surface waves
and the effect of these waves decrease rapidly with depth. Knowles
[33], has shown that for all harmonically time-dependent free
motions of the half-space, such that the plane boundary is free of
traction, the displacements and stresses may be represented in
terms of a scalar potential function of the surface coordinates
which satisfies the two dimensional wave equation with the Ray-
leigh wave speed. The speed at which Rayleigh waves can propa-
gate over the surface of an isotropic linear elastic half-space is a
root of the equation.
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speeds of the solid and k;l are Lame’s constants with q being the
density. Eq. (1) can be expressed as
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The root x of Eq. (2) is found out by using the procedure out-

lined in Section 3.

2.2. Anisotropic solids

The modern theory of surface acoustic waves in anisotropic
media owes most of its results to the pioneering work of Stroh
[34,35]. A comprehensive review of the formalism, theoretical
implication and schemes to compute wave speeds in anisotropic
media is available in a text book by Ting [36]. For monoclinic crys-
tals possessing atleast one plane of symmetry, secular equations
which are quartic in the squared wave speed were found by Ting
[37] with coefficients in terms of compliances and Destrade [17]
with coefficients in terms of the stiffness.

The quartic equation for Rayleigh waves in a linear elastic semi-
infinite body made of monoclinic material with a plane of symme-
try at x3 ¼ 0 is given by [18].
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