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a b s t r a c t

We theoretically study the dispersion properties of elastic waves in hexagonal and honeycomb mono-
layer granular membranes with either out-of-plane or in-plane particle motion. The particles interact
predominantly via normal and transverse contact rigidities. When rotational degrees of freedom are
taken into account, the bending and torsional rigidities of the intergrain contacts can control some of
the phononic modes. The existence of zero-frequency modes, zero-group-velocity modes and their trans-
formation into slow propagating phononic modes due to weak bending and torsional intergrain interac-
tions are investigated. We also study the formation and manipulation of Dirac cones and multiple
degenerated modes. This could motivate variety of potential applications in elastic waves control by
manipulating the contact rigidities in granular phononic crystals.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

There has been a growing interest in investigating the propaga-
tion of elastic/acoustic waves in phononic crystals in the last dec-
ade [1,2]. Owing to Bragg scattering in spatially periodic media,
phononic crystals possess exotic dispersion characteristics includ-
ing, for example, frequency band gaps [3], negative refraction [4],
subwavelength imaging [5], etc. Although studies of phononic
crystals involving elastic behaviors have been reported in all
dimensions, from 1D to 3D [6–8], most of the recent studies are
focusing on different types of two-dimensional lattice that support
bulk or edge modes [9–11]. For instance, in the nearly isostatic
square/kagome lattices, by accounting for only the nearest neigh-
bor central-force interactions, soft modes and zero-frequency bulk
modes have been predicted [12,13]. More interestingly, when the
kagome lattices are twisted, negative Poisson ratio and zero-
frequency edge states could be achieved [14,15]. Other fascinating
elastic properties, such as topological soft modes and topological
edge modes, have also been reported in the kagome and honey-
comb systems [16,17].

In non-consolidated granular crystals, the interactions between
individual grains take place via local contacts, which are much
smaller in size than the dimensions of the individual grains and

inherently much softer than the grains [18–22], e.g., Hertzian con-
tacts. Even when granular crystals are consolidated via their cur-
ing, like opals, or by grain-connecting ligands, like in nanocrystal
superlattices, the elastic links between the grains keep being sig-
nificantly smaller and softer than the grains themselves. This
induces propagation of elastic waves in granular structures at sig-
nificantly slower velocities than in the individual grains [23–25]
even if the rotational degrees of freedom of the individual beads
are not strongly involved. In contrast to normal forces, which are
central forces in most of the spring-mass systems [14–17], in gran-
ular crystals the shear forces due to transverse rigidity of the con-
tacts are non-central and can initiate the rotation of the beads.
Thus the rotational degrees of freedom of the individual beads,
the particle dimensions and the interactions through non-central
forces should be taken into consideration. It was theoretically pre-
dicted [6,18–20] and experimentally demonstrated [21,22] that,
due to the rotational degrees of freedom of the particles, additional
coupled rotational/transverse and pure rotational modes can
propagate in granular crystals, while the pure transverse modes,
predicted by the theoretical case of the frozen grain rotations,
are modified into coupled transverse/rotational ones. Interestingly,
accounting for the rotational degrees of freedom, in addition to
translational ones, can also lead to the existence of zero-
frequency (zero-energy) modes [26–28]. The additional rotational
degrees of freedom provide extra flexibilities to dispersion engi-
neering of phononic crystals and to the control of the propagation
of elastic waves.
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It should be mentioned that, a general theoretical approach for
the analysis of acoustic waves in phononic crystals is known
already for quite a long time [1–3], and the Cosserat continuum
theory for the description of the long-wavelength acoustic wave
propagating in the micropolar media with rotational degrees of
freedom exists for more than a century [29–31]. In contrast, the
analytical discretized models that study the rotational modes and
their coupling to other modes, in particular to shear ones, have
started to attract increasing interest only in recent years
[6,18–20,26,32]. In this work, we exploit the Lagrangian method
[33] to evaluate the intergrain interactions of granular phononic
membranes. An important advantage of the method is that it is
possible to find analytical solutions for modes at high symmetry
points, like C, M and K. The analytical formulas are very useful
by giving clear guidelines on how to control the phonons spectra
and to design suitable phononic crystals.

In particular, we theoretically study the dispersion relations of
elastic waves in hexagonal and honeycomb monolayer granular
membranes for both out-of plane and in-plane motion. We also
demonstrate that rotational modes and their coupling to transla-
tional modes can provide more flexibilities and additional func-
tionalities in the control of the elastic wave propagation.
Specifically, the granular phononic structures are expected to be
advantageous in the monitoring of bulk shear and surface Rayleigh
acoustic waves [20,34]. Besides, the detailed analysis of zero-
frequency modes is reported. In the honeycomb lattices, we
demonstrate the existence of zero-group-velocity rotational modes
with non-zero frequency, the propagation of which can be initiated
by weak bending and torsional interactions between the beads. We
also study how the number and parameters of these modes are
changing in transition from hexagonal to honeycomb lattice.
Finally, we predict the degenerated modes at C and K points that
can be realized for particular values of bending and torsional rigidi-
ties. For example, when the bending/torsional rigidities have spe-
cial values, the Dirac-like cones, triple degenerated points and
even the double Dirac cones can be obtained. As reported in many
previous publications, manipulation of Dirac cones could lead to
many interesting effects [35–39]. For instance, by breaking the
symmetry of the system, the opening of the gap in the Dirac K
point in acoustic/elastic systems can give rise to the topological
edge states propagating only along some particular directions
[40–42]. Even for the Dirac cone at C point, one could expect to
observe the pseudospin-resolved Berry curvatures of photonic
bands and helical edge states characterized by Poynting vectors
[43,44]. The analytical predictions of Dirac cones and double Dirac
cones in this work could largely facilitate the study of the topolog-
ical properties of elastic waves in more complex granular mem-
branes with modified/broken symmetries. The study of these
types of membranes is motivated by potential applications of the
unidirectional waves propagating with reduced/avoided attenua-
tion/scattering. In general, we believe that our theoretical analysis
of the elastic waves in mechanically free membranes would be
useful also in the studies of the interaction of the granular layers
with the elastic substrates [45–48].

This paper is constructed as follows: in Section 2, the structures
of the studied membranes and the interactions between beads are
analyzed. The theoretical calculation and analysis of the modes in
hexagonal monolayer membranes with out-of-plane motion is pre-
sented in Section 3. This analysis includes the phonon spectra, the
zero-frequency modes, the degenerated modes and the Dirac cones
at the high symmetry points. Then we are focusing on in-plane
motion in hexagonal monolayer membrane in Section 4. In Sec-
tions 5 and 6, we turn our attention to the honeycomb monolayer
membranes for both the case of out-of-plane and in-plane motions.
In Section 7, we present the conclusions of this work.

2. Structures and intergrain interactions

As shown in Fig. 1, the two-dimensional infinite monolayer
membranes under consideration are composed of periodically
ordered spherical particles with radius R, arranged in a hexagonal
and a honeycomb lattice. The structures are characterized by the
lattice constant a ¼ 2R for the hexagonal lattice and a ¼ 2
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the honeycomb lattice. The corresponding first Brillouin zones
are also depicted in Fig. 1. Considering different types of motion
in these monolayer membranes, the following degrees of freedom
are taken into account: (1) For the out-of-plane motion, the beads
in the membrane exhibit out-of-plane displacement ðuÞ along
z-axis and in-plane rotational angles u and / (u-rotation with
the axis in the x-direction and /-rotation with the axis in the
y-direction). (2) For the in-plane motion, the beads in the mem-
brane possess out-of-plane rotation (u) along z-axis and in-plane
displacements ux and uy along x-axis and y-axis, respectively. The
dynamics and the coupling of these mechanical motions are con-
trolled by the following forces and/or moments (see Fig. 2): (1)
Shear forces, which are characterized by an effective shear rigidity
ns (Fig. 2(a)). These forces are activated in the membrane due to a
resistance of the contact to relative displacement of the beads in
the direction transversal to the axis connecting their centers and
due to in-phase rotation of the beads relative to the direction nor-
mal to the axis connecting their centers. (2) Torsional forces, which
are characterized by an effective torsional (spin) rigidity nt (Fig. 2
(b)). The resistance of the contact to relative rotation of the beads
along the axis connecting their centers can initiate these forces. (3)
Bending forces, which are characterized by an effective bending
rigidity nb (Fig. 2(c)). They originate from the resistance of the con-
tact of beads to rolling. (4) Normal forces at the contact between
two adjacent particles described by normal rigidity nn (Fig. 2(d)).
This type of interaction can be excited when there is relative dis-
placement between two adjacent beads along the axis connecting
their centers. For the out-of-plane motion, the motions of beads
in the membranes lead to the shear, torsional and bending interac-
tions, while the normal forces are not initiated. For the in-plane
motion, the normal, shear and bending interactions are activated,
while the torsional interactions are not.

In Fig. 2(a) the effective shear rigidity of the contact is repre-
sented by a single spring of an effective rigidity ns and the energy
of interaction can be evaluated because the relative macroscopic
displacements of the neighbor beads are known. The interaction
energy is proportional to the product of the effective shear rigidity
and the square of the relative displacement which is equal to the
elongation of the effective spring. However, one should keep in
mind that the shear interactions are in fact distributed at the com-
plete surface of the contact. To appreciate the role of the finite
dimensions of the contact, we split the effective shear spring into
two independent springs of half rigidity separated from spatially
not only themselves but also from the center of the contact. The
characteristic distance of the separation is of the order of the con-
tact radius d. This presentation of the shear interaction between
the contact faces does not change the magnitude of shear interac-
tion, however, it reveals the existence of the torsional rigidity of
the contact. From Fig. 2(b) it is clear that, when the neighbor beads
exhibit unequal rotations relative to the axis connecting their
centers, one of the springs elongates while the other shrinks. Thus,
it is the induced forces acting on the beads that are totally
compensated being combined destructively, but not the moments.
The moments due to the deformation of two beads will be added
constructively, introducing resistance to torsional motion, which
we describe as torsional interaction (Fig. 2(b)). It is worth noting
that the elastic energy stored in shear interaction, presented

in Fig. 2(a) is � ns u2 � u1ð Þ2. The elastic energy stored in shear
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