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a b s t r a c t

A nonlinear constitutive relationship was established to investigate nonlinear behaviors of ultrasonic
wave propagation in plastically damaged media based on analyses of mixed dislocation evolution.
Finite element simulations of longitudinal wave propagation in plastically deformed martensite stainless
steel were performed based on the proposed nonlinear constitutive relationship, in which the contribu-
tion of mixed dislocation to acoustic nonlinearity was considered. The simulated results were validated
by experimental measurements of plastically deformed 30Cr2Ni4MoV martensite stainless steels.
Simulated and experimental results both reveal a monotonically increasing tendency of the normalized
acoustic nonlinearity parameter as a function of plastic strain. Microscopic studies revealed that the
changes of the acoustic nonlinearity are mainly attributed to dislocation evolutions, such as dislocation
density, dislocation length, and the type and fraction of dislocations during plastic loading.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Engineering structures and components in service usually
undergo plastic deformation, which is one of the most common
degradation mechanisms in materials. Material failure occurs with
increasing cyclic plastic deformation, which generally accompanies
microstructural evolution (e.g., dislocation multiplication, annihi-
lation, and subgrain initiation). Therefore, quantitatively tracking
microstructural evolution is essential to evaluate the structural
health of plastically damaged materials at an early stage. Recently,
nonlinear ultrasound has been found to be a promising nonde-
structive technique to track microstructural changes. Many previ-
ous studies have been conducted to determine the correlations
between ultrasonic nonlinearity and plastic deformation or fatigue
damages [1–15]. Previous researches have mostly focused on the
experimental measurements of ultrasonic nonlinearity, while less
information is available with respect to numerical simulation of
nonlinear ultrasonic propagation in plastically deformed media.

Numerical analyses can generally acquire similar results as
measured from experiments that usually are time- and labor-
consuming (e.g., ultrasonic measurements of creep damage), and
can provide a physical insight into the relationship between acous-
tic nonlinear responses and degradations in materials. Some

numerical methods have been proposed to simulate ultrasonic
nonlinearity of media and/or damage, such as finite element
method (FEM) [16,17], finite difference time domain method
(FDTD) [18], and local interaction simulation approach (LISA)
[19]. Based on finite element simulations, Liu et al. [20] clarified
a theoretical method for selecting primary ultrasonic wave modes
that generate cumulative second harmonics in plates. Chillara and
Lissenden [17] numerically analyzed the contributions of third-
order elastic constants and material and geometric nonlinearities
to harmonic generation from S0 and A0 modes. Matsuda and Biwa’s
numerical studies showed that the second-harmonic amplitude
grows cumulatively in a certain range of fundamental frequency
[21]. Blanloeuil et al. [22] investigated the interaction between
ultrasonic waves and a crack modeled by an interface of unilateral
contact with Coulombs friction. However, the damaged structures
in practice are generally difficult to be constructed due to the
numerous and complex microstructures. Modeling the microstruc-
tures (e.g. dislocations, precipitations, etc.) in geometries is still a
big challenge. However, when combining the microstructural con-
tributions to acoustic nonlinearity with the resultant constitutive
relationship of damaged materials, numerical analyses may be
effectively used to describe the nonlinear ultrasonic responses to
microstructural evolutions. There now have been many theoretical
models describing the contributions of dislocation evolution to
acoustic nonlinearity, such as monopole model [23], dipole model
[24] and some advanced models [11,12].
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In this work, an improved theoretical model was derived to
study the contribution of mixed (i.e., edge and screw) dislocations
to acoustic nonlinearity based on the orientation-dependent dislo-
cation line energy. Then, finite element analyses were carried out
to study nonlinear ultrasonic waves propagation in the plastically
deformed media. The derived constitutive relationship was intro-
duced into the commercial finite element analysis software, Aba-
qus/EXPLICT. Experimental measurements of the nonlinear
ultrasonic propagation on plastically damaged 30Cr2Ni4MoV
martensite steel specimens were conducted to validate the finite
element modeling. A comparison between the experimental and
simulated results was discussed.

2. Theoretical considerations

2.1. Fundamental equations of nonlinear elastodynamics

Considering the longitudinal waves and neglecting the disper-
sion and attenuation, the equations of motion in the Lagrangian
coordinate Y can be written as [25]
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where ui are components of the particle displacement vector and rij

are components of the first Piola–Kirchhoff stress tensor. q0 is mass
density in an unstressed state.

The stress tensor in Eq. (1) may be expanded in terms of the
particle displacement gradients as [25]
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where Cijkl and Cijklmn are components of the second- and third-
order elastic tensors defined as

Cijkl ¼ kdijdkl þ 2lIijkl; ð3Þ

Cijklmn ¼ A
2

dikIjlmn þ dilIjkmn þ djkIilmn þ djlIikmn
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þ 2B dijIklmn þ dklImnij þ dmnIijkl
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where k and l are the Lamé parameters and A, B, and C are the
third-order elastic (TOE) constants in isotropic media, which are
related to the inherent properties of materials. dij are the Kro-
necker’s deltas and Iijkl ¼ ðdikdjl þ dildjkÞ=2.

Considering a one-dimensional medium such as a rod, the wave
solution of Eq. (1) can be obtained by a simple perturbation analy-
sis, as

uðY1; tÞ ¼ u0 sinðkY1 �xtÞ þ u2
0k
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where u0 is the amplitude of fundamental wave A1, k is the wave
number, x is the angular frequency. The amplitude of second har-

monic wave A2 is u2
0k

2b0Y1=8, where b0 denotes acoustic nonlinear-
ity parameter of the medium at an intact state. The acoustic
nonlinearity parameter b0 can be expressed as,
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The relative acoustic nonlinearity parameter A2/A1
2, which is

conveniently acquired via either experiments or simulations,
reflects the nonlinear properties of wave propagation at a fixed
distance with a certain wave number.

2.2. Acoustic nonlinearity related to dislocation evolution

For plastic deformation during the early stages of cyclic stress-
induced plasticity in metallic alloys, the evolution of dislocations
usually is related to the change of dislocation density and the
development of dislocation structures. A model of mixed disloca-
tions contributing to the acoustic nonlinearity has been developed
based on the orientation-dependent dislocation line energy. If the
dislocation is pinned at the points separated by a distance of 2L
as shown in Fig. 1 [26], the dislocation line will ‘‘bow out” like
an arc string under an externally applied stress. The slip plane is
taken as the ng plane. For the case of pure edge and screw disloca-
tions, the mixed bowlike dislocation is the superposition of its edge
and screw parts. Assuming there is no interaction between the dif-
ferent dislocations, the total line energy of the mixed dislocation,
Emix(h), in an isotropic material can be expressed as [27]:

EmixðhÞ ¼ lb2 sin2 h
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where l is the shear modulus, b is the absolute value of Burgers
vector, m is the Poisson’s ratio, h is the angle between the Burgers
vectors and the dislocation line, ro and ri are the effective outer
and inner radius of the cylindrical model of the mixed dislocation,
i.e., the crystal radius and the core radius, respectively [27].

In general, the line energy of a bow-out dislocation is not con-
stant along the dislocation line and the variable line tension, T, in
the direction of the Burger vector can be expressed as [27]:

T ¼ EmixðhÞ þ d2EmixðhÞ
dh2

: ð8Þ

For a bow-out arc of the dislocation line under uniform stress
and according to the equilibrium condition of forces on the dislo-
cation line [26,27], substituting Eq. (7) into Eq. (8) yields

s ¼ T
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The shear strain caused by the mixed dislocation, edis, under the
influence of applied shear stress, s, is [26]

edis ¼ 8pð1� mÞ
3
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where K is the dislocation density, and ln(ro/ri) is assumed as 2p
[26]. Thus, the total longitudinal strain, e, induced in the material
by ultrasound, is given by

Fig. 1. Bow-out dislocation line under stress. The orientation of ds is related to the
Burger vector b.
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