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a b s t r a c t

Beam divergences of acoustical fields in semi-infinite homogeneous anisotropic media are calculated
based on a semi-analytical model. The model for a plane source in a semi-infinite homogeneous
anisotropic medium is proposed as an extended model for a point source in an infinite medium. Beam
divergences propagating along crystallographic axes h100i, h110i, and h111i in a cubic crystal, a single
crystalline Ni-based alloy, are measured and compared to calculation results for verifying the model. The
contribution of beam divergence attenuation to the total attenuation for propagating in anisotropic
polycrystalline materials is quantitatively evaluated in isolation from scattering attenuation effects.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Austenitic steels showing acoustical anisotropy are widely used
in the main components of power plants as heat-resistant and/or
corrosion-resistant alloys. Ultrasonic propagation behavior in weld
metals and cast steels made of austenitic steels, e.g. stainless steels
316 and Ni-based alloys 600, is more complicated than that of
isotropic media, such as base metal made of ferrite steels, and
may cause low signal-to-noise ratio and beam skewing in beam
propagation [1]. Especially, solidification structures like welds
indicate strong acoustical anisotropy.

For improvement of non-destructive evaluation (NDE) of auste-
nitic steel welds, optimization of ultrasonic testing conditions is
essential by understanding propagation and scattering behaviors.
In austenitic welds, these behaviors are very complex because of
polycrystalline structure composed of many grains with varying
size and orientation. Research works have been reported for
understanding propagation behavior by modeling, e.g. ray-tracing
[2,3], multi-Gaussian [4], and EFIT [5]. Attenuation of ultrasonic
beam is arisen from both scattering at grain boundaries and beam
divergence. Therefore, quantitative evaluation of scattering
behavior is difficult because of mixing extracting scattering and

divergence effects. In this paper, we propose a quantitative model-
ing of beam divergence for indirect evaluation of scattering effect.

The solidified structure of the austenitic steels is polycrystalline
and composed of cubic crystalline grains. The crystal growth orien-
tation of the austenitic steels is aligned along the crystal axis
h100i, and crystal orientations along the other axes normal to
the h100i axis are distributed randomly. The solidified structure
is locally regarded as a unidirectional solidification; therefore,
the solidified structure is macroscopically treated as a transversely
isotropic crystal system.

Ultrasonic propagation behavior in austenitic steel welds has
been reported since the late 1970s. The angular dependence of
velocity and attenuation are reported in both the theoretical and
experimental aspects [6–10]. Anisotropy of the austenitic welds
is treated as a model based on transversely isotropic crystal sys-
tems, and the model is consistent with experiments with respect
to the angular dependence of the velocity.

However, with regard to the angular dependence of attenua-
tion, it has been reported that the measured attenuation results
are inconsistent with the prediction of scattering theories for poly-
crystalline materials: the measured attenuation shows minimal
value for an approximately 45-degree angle between the beam
propagation direction and crystal growth direction [11]; the
theories predict an attenuation increase with an increasing angle
between the beam propagation and the crystal growth angles.
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Several comparisons between measured attenuation and theo-
retical attenuation have been reported. Scattering attenuation
effects have been obtained from the measured amplitude through
phase correction for received waves by Seldis [12–14]. For a theo-
retical approach, semi-analytical modeling for anisotropic material
has been reported by Spies [15]. Beam skewing and beam diver-
gence effects are calculated numerically for specific crystalline
axes. However, the beam divergence attenuation dependency on
crystalline axes has been evaluated qualitatively.

A model for a plane source in a semi-infinite anisotropic med-
ium is proposed in this study. The model is extended from a model
for a point source in an infinite anisotropic medium, which was
originally proposed by Buchwald [16]. Beam divergence attenua-
tion is evaluated quantitatively by means of the extended model.
The extended model is verified by comparison with experiments
for a single crystalline material.

Additionally, the contribution of beam divergence attenuation
to the total attenuation for propagating in austenitic welds is quan-
titatively estimated based on the extended model applied to a
transversely isotropic medium. The angular dependence of beam
divergence attenuation is discussed separately from scattering
attenuation.

2. Theory

The equations of motion for elastic waves are expressed by
Eq. (1):

cijkluk;lj þ f i ¼ q€ui; ð1Þ
where cijkl is the stiffness tensor, ui is the displacement vector, q is

the density, f i is the body force per unit volume, uk;lj ¼ @2uk=@xl@xj,

and €ui ¼ @2ui=@t2.
First, assume that the body force is a time-harmonic point

source acting at the origin in the mth direction in an infinite
domain, as shown in Fig. 1(a). Thus, the ith component of the unit

body force is expressed as f i ¼ f ðmÞ
i ¼ dimdðxÞe�ixt , using the angular

frequency x.
Let Uimðx; tÞ be the ith component of the displacement at point x

due to the point force acting in the mth direction at the origin. The
displacement has the same time vibration as the point force after
some elapsed time; therefore, Uimðx; tÞ can be expressed by
Uimðx; tÞ ¼ UimðxÞe�ixt . The function UimðxÞ satisfies the following
equations:

cijklUkm;ljðxÞ þ dimdðxÞ ¼ �qx2UimðxÞ: ð2Þ
According to Buchwald [16], UimðxÞ is obtained by applying the

Fourier transform and its inverse in space to Eq. (2), and then
UimðxÞ can be approximately expressed as:

Uimðx; tÞ ¼
X
sp
3

1

2pjkp1kp2j1=2
� Cim

@S=@s3
� exp ixðsp3x3Þ � t

� �
x3

� exp
ip
4
rp

� �
; ð3Þ

where k1 and k2 are the principal curvatures of slowness and si is a
component of the slowness vector s. S is the determinant of the
matrix Sik ¼ Cijklsjsl � qdik, Cim is the adjoint matrix of the matrix S,
and rp is defined by rp ¼ sgnkp1 þ sgnkp2. In Eq. (3), an observation
point is located at the point Pð0; 0; x3Þ far enough from the point
source, and spj is a slowness vector component of the normal on

the slowness surface, which is parallel to OP
�!

.
When the body force per unit volume is given by

f i ¼ F0ðxÞeie�ixt and is distributed in domain D, the displacement
vector ui is expressed in the convolution integral of Uik and Fi:

ukðx; tÞ ¼
Z
D
Uikðx� y; tÞF0ðyÞeidVy; ð4Þ

where ei is the unit vector component.
As shown in Fig. 2, the surface traction on ST is considered to be

equivalent to the body force action in the thin domain with surface
ST and thickness e. Since F0ðxÞedV ¼ P0ðxÞedS and P0ðxÞ ¼ F0ðxÞe,
Eq. (3) can be written in a surface integral form:

uk ¼
Z
ST

Uikðx�y;tÞP0ðyÞeidSy

¼
Z
ST

X
sp3

1

2pjkp1kp2j1=2
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� �
dSy;

ð5Þ
Note that in Eq. (5), the positive x3-direction is always kept in the
direction ðx� yÞ by rotating the axes depending on source position
y, and xp3 is the distance between point O and P.

In Eq. (5), the integrand consists of the first part with the same
dimension as the reciprocal of velocity, the second part depending
on the source term P0Cikei, and the third exponential part that is
inversely proportional to the distance: xp3 ¼ OP.

A simplified expression of the second part can be obtained by
algebraic calculations [17–19]. The adjoint matrix of the matrix S
is proportional to the products of polarization vectors p (eigenvec-
tors of the matrix S):

Cik ¼ trðSÞpipk: ð6Þ
The denominator of the second part of the integrand in Eq. (5) is

expressed as Eq. (7):

@S=@sj ¼ Cik@Sik=@sj ¼ trðSÞcijklslpipk ¼ trðSÞqVgroup
j ð7Þ
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Fig. 1. Geometric conditions for infinite and half-space solids. (a) Infinite solid, and (b) half-space solid.
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