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a b s t r a c t

A unimorph flexural transducer design is proposed and tested with regard to mode shapes and frequen-
cies. The transducers consist of a passive metal cap structure, and a thin piezoelectric disc, rigidly bonded
to the inside. Extensive finite element (FE) modelling, and experimental 2D, time-resolved displacement
measurements were done to characterise the transducers flexural properties, and to compare them to the
analytical solutions of thin vibrating plates. Emphasis was put on characterising the passive layer of the
unimorph structure, before bonding the piezoelectric element, to understand how the active element
affects the behaviour of the flexing plate. A high power Nd:YAG laser was used to actuate the metal plate
(non-contact), and the frequency content of the resulting displacement signal was analysed to identify
the flexural modes. The non-axisymmetric modes, which are conventionally disregarded because of their
unfavourable acoustic properties, were also taken into account. There was excellent agreement between
the experimental results and the FE simulation data. There was good agreement with the analytical edge
clamped plate model, but with some notable deviations, which have not previously been identified or
commented upon. Specifically, the second axisymmetric mode is split into three separate modes, which
is not explained by the traditional theory of vibrating plates.

Crown Copyright � 2015 Published by Elsevier B.V. All rights reserved.

1. Introduction

The field of air-coupled ultrasonics has received an increased
interest over the years, as it has expanded into new areas of appli-
cation, including wireless communication [1], contactless material
characterisation [2], gas flow metering [3,4] and robotics [5]. Each
application has its own set of requirements, which has pushed the
development of transducer technology. The usual problem with
air-coupled transduction is the large acoustic impedance mis-
match, between the transducer element, typically lead zirconate
titanate (PZT), and the propagation medium, causing an inefficient
power output and narrow operating bandwidth.

The classical solution is to gradually decrease the impedance
along the path of propagation, by introducing one or more
matching layers [6], often with a combined thickness of a quarter
wavelength. In order to match the transducer impedance to air,
low density, often porous, materials are needed [7] that can have
undesirable high attenuation. This as well as the introduction of
multiple boundaries that can cause failure by debonding, makes
the transducer less robust and unsuitable for some industrial

applications. For example, ultrasonic transducers used for flow
measurements, often incorporate a metal cap that shields the
piezoelectric and matching layer elements, but which inevitably
causes signal loss and consequently the requirement of higher
excitation voltages in these applications.

More recently, piezocomposites [8,9] and ferroelectrets [10]
have successfully been used instead of traditional piezoceramics,
because of their lower acoustic impedances. Piezocomposites will
in general still require a matching layer to achieve acceptable effi-
ciency, and ferroelectrets have high attenuation and are in them-
selves not very robust.

Electrostatic transducers, such as capacitative micromachined
ultrasonic transducers (CMUTs) [11,12], have been demonstrated
to have excellent coupling to air, as well as an enhanced band-
width. However, the requirements of a large bias voltage, as well
as a thin flexible membrane as the radiating front face, can be
problematic for some applications, including gas flow measure-
ments, where intrinsic safety is highly critical.

Another solution is to use the flexural modes of a metal plate or
membrane to produce ultrasound. Because the plate displaces the
air by bending, its mechanical impedance is much lower than the
acoustic impedance of the plate material [13]. Transducers built
on this principle, known as flexural transducers [14–19], can
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produce large displacements for a relatively low excitation voltage.
In such a device configuration, a piezoelectric disc can be bonded
directly to the back of the plate, without matching layers, thus
minimising the number of surface bonds that can fail over time.
Also, by having a metal plate as the radiating front face, the trans-
ducer gains an inherent robustness, for which other transducers
would suffer a signal loss. These types of ceramic–metal transduc-
ers, also known as unimorphs [20], bimorphs [21] or multimorphs
depending on the number of active layers, are not only used for
ultrasound transduction, but can be found in a variety of actuator
applications, e.g. energy harvesting [22], where their vibrational
and flexing properties are exploited.

Air-coupled flexural transducers are typically used for low
power proximity measurements [23], e.g. in parking sensors, as
well as for high power ultrasonics [24,25]. Low frequency, typically
40 kHz or lower, flexural transducers are commercially available.
However, many applications require higher frequency signals,
and the designs proposed in this paper allowed operating frequen-
cies of �90 kHz and �150 kHz respectively. Some initial results
and analyses by the authors on flexural transducers, upon which
this article extends, can be found in the conference proceedings
[26,27].

The frequency of the vibrations and hence of the ultrasonic
wave, depends on the driving frequency of the electrical signal
applied to the piezoelectric element, but large amplitude displace-
ments are achieved by driving the system at its resonance frequen-
cies. The resonance frequencies, i.e. the modal frequencies, of the
system depend on the geometry of the passive layer and the piezo-
electric disc, and are not significantly affected by the through
thickness resonance modes of the piezoelectric element, which
due to the small thickness are typically over an order of magnitude
greater than the operational frequency of the flexural transducer.

Flexural transducers share many traits with the more recently
developed piezoelectric micromachined ultrasonic transducers
(pMUTs) [28], which combine the enhanced fluid coupling of flex-
tensional vibrations of a plate with micro electromechanical sys-
tems (MEMS) technology. In essence, a pMUT is an array of
miniaturised flexural transducers operating in the fundamental
bending mode. pMUTs have enhanced bandwidth and good fluid
coupling, but lack the intrinsic robustness of the macro flexural
transducer. Also, because of the microscopic nature of pMUTs,
the manufacturing process is more complicated and expensive.
The analysis of macroscopic flexural transducers in this paper is
similar to that of contemporary pMUT research. An excellent arti-
cle with experimental validation of theoretical calculations on the
flexural properties of the single pMUT element is found in [29].

1.1. Theory of vibrations in plates

The equation describing the time dependent, normal displace-
ment of a thin plate is a fourth order partial differential equation
[30]:

Dr4wðx; tÞ þ q
@2wðx; tÞ

@t2
¼ 0; ð1Þ

where w is the normal displacement of the plate, q is the volume
density and D is the rigidity, which is given by

D ¼ Eh3

12ð1� m2Þ ; ð2Þ

where E is Young’s modulus, h is the plate thickness and m is Pois-
son’s ratio. Solving (1) to find mode shapes Wm;n gives
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where An and Bn are constants determined by the boundary
conditions, a is the plate radius, km;n is the mode constant for the
ðm; nÞ mode, which has m radial nodes (excluding the outer edge)
and n nodal diameters. The frequency of a mode is given by
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Fig. 1 illustrates the mode numbering convention used, which is
also used in [30]. Some numerically calculated values of k are given
in Table 1.

2. Methods

The transducer design introduced in this paper is schematically
shown with labeled dimensions in Fig. 2. Two types of transducers
were made, one from aluminium and one from titanium. The
dimensions of the transducers were chosen such that the vibrating
front face of the passive layer is significantly thinner than the sides
of the cap, in order to simulate clamped boundary conditions. Also,
for the Al transducer the thickness and radius of the cap were cho-
sen such that the (1,0) mode should be above 100 kHz. The values
of the dimensions for each type of transducer is given in Table 2.
Aluminium was chosen because it is easy to process, and titanium
because of its robustness, durability and strength to weight ratio
for industrial applications. For similar reason stainless steel was
also initially tested, but its material properties, e.g. high rigidity,
makes it less efficient for flexural transduction, and consequently
not considered within this paper.

Finite element (FE) methods [31], using software package
PZFlex (Weidlinger Associates Inc., USA), were used to simulate
axisymmetric flexural transducers. The FE model was used to
identify the modal frequencies of the transducer as well as for

Fig. 1. Nodal lines of the four first modes of an edge clamped plate.

Table 1
Numerically calculated values of the mode constant km;n of a clamped plate, from (3),
for m ¼ 0;1;2 and n ¼ 0;1;2;3.

m n

0 1 2 3

0 3.19625 4.61085 5.90565 7.14355
1 6.30645 7.79925 9.19685 10.5366
2 9.43945 10.958 12.4022 13.795
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