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Abstract—The propagation of shear waves from impulsive forces is an important topic in elastography. Obser-
vations of shear wave propagation can be obtained with numerous clinical imaging systems. Parameter estimations
of the shear wave speed in tissues, and more generally the viscoelastic parameters of tissues, are based on some
underlying models of shear wave propagation. The models typically include specific choices of the spatial and
temporal shape of the impulsive force and the elastic or viscoelastic properties of the medium. In this work, we
extend the analytical treatment of 2-D shear wave propagation in a biomaterial. The approach applies integral
theorems relevant to the solution of the generalized Helmholtz equation, and does not depend on a specific rheo-
logical model of the tissue’s viscoelastic properties. Estimators of attenuation and shear wave speed are derived
from the analytical solutions, and these are applied to an elastic phantom, a viscoelastic phantom and in vivo liver
using a clinical ultrasound scanner. In these samples, estimated shear wave group velocities ranged from 1.7 m/s
in the liver to 2.5 m/s in the viscoelastic phantom, and these are lower-bounded by independent measurements
of phase velocity. (E-mail: kevin.parker@rochester.edu) © 2018 World Federation for Ultrasound in Medicine
& Biology. All rights reserved.
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INTRODUCTION

A number of techniques have been developed to esti-
mate and image the elastic properties of tissues (Doyley
2012; Parker et al. 2011). These provide useful biome-
chanical and clinically relevant information not available
from conventional radiology. A subset of techniques utilize
acoustic radiation force from short-duration pushing pulses
as an initial condition, which then results in a propagat-
ing shear wave. Through tracking of the propagating wave,
the shear wave velocity can be estimated, and this yields
the Young’s modulus—or stiffness—of the material
(Sarvazyan et al. 1998). A variety of approaches employ-
ing radiation force, with important clinical applications,
have been developed (Fatemi and Greenleaf 1998; Hah
et al. 2012; Hazard et al. 2012; Konofagou and Hynynen
2003; McAleavey and Menon 2007; Nightingale et al. 1999;
Parker et al. 2011).

In lossy tissues, however, a propagating shear wave
produced by a focused ultrasound beam’s radiation force
will rapidly diminish within a few millimeters from the

source. Furthermore, the displacement wave has an ex-
tended “tail,” and its original shape becomes distorted.
These effects complicate attempts to track the key fea-
tures of the propagating pulse to estimate shear wave speed.
Analytical and numerical models have been proposed to
model the evolution and decay of pulses in viscoelastic
media (Bercoff et al. 2004a; Fahey et al. 2005; Kazemirad
et al. 2016; Leartprapun et al. 2017; Nenadic et al. 2017;
Nightingale et al. 1999; Parker and Baddour 2014;
Sarvazyan et al. 1998; Schmitt et al. 2010; Vappou et al.
2009; Wijesinghe et al. 2015). However, there is still the
need for a closed-form analytical solution that clearly iden-
tifies the key terms responsible for the distortion and decay
of the pulse. Furthermore, there are different models for
wave propagation in lossy media (Bercoff et al. 2004b;
Chen et al. 2004; Chen and Holm 2003; Giannoula and
Cobbold 2008, 2009; Szabo 1994; Urban et al. 2009).
Because there is no consensus yet as to the most appro-
priate model and mechanism of loss for shear waves in
soft tissues, it is useful to have analytical expressions that
are independent of any particular model, but still valid over
the operating range of shear wave frequencies.

The approach taken in this article follows the earlier
framework of Parker and Baddour (2014). First, the gov-
erning equations and transforms are stated in a progression
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favored by the classic treatment of Graff (1975). Then, a
2-D beam pattern is introduced, and the equations are
reduced to simplified forms. General viscoelastic mate-
rial properties are simplified to first-order (Taylor series
expansion) terms and introduced into the analytic solu-
tions, retaining leading terms. From these, some estimators
of tissue parameters can be specified. Some preliminary
examples are then presented, in which the data are taken
from a clinical imaging scanner.

THEORY

We model the applied radiation force as being long
and relatively constant in the z (depth) direction, so that
spatial derivatives in the z direction are small compared
with other terms. In practice, this is commensurate with
a higher f-number focus in a weakly attenuating medium
and multidepth push sequences. In this case, we assume
that the following holds for displacements u and body
forces f:
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In these circumstances, the governing equations for
displacements in the medium reduce to
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where µ is the shear modulus and ρ is the density of
the medium. The particle motions are polarized in a
single direction z, and the resulting waves will be shear

waves propagating at the velocity c = μ ρ (Graff

1975).
By taking the spatial and temporal Fourier trans-

form of the governing equation, and then the inverse
transform, we find the solution is given by
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where F ε η ω, ,( ) is the Fourier transform of c f x y t2 , ,( ) ,
the applied radiation force pulse. Assuming f x y t, ,( ) is
a sufficiently short pulse so as to be modeled as an impulse
in time (Zvietcovich et al. 2017) and Gaussian in x y,( )
with spatial width of σ σx y,( ), respectively,
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Substituting the particular form yields
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The direct solution of eqn (5) involves treatment
of the singularity formed by the denominator becoming

zero when ε η ω2 2 2 2 2+ = =c k . Baddour (2011) has

insightfully explained how the denominator serves as a
“sifting” property, meaning the solution is completely gov-
erned by the integrand evaluated at the singularity. For
example, Baddour’s theorem 5 for complex exponentials
and a real wave number is
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Effectively, this transforms the spatial transform φ η( )
related to the distribution of force and converts it to a tem-
poral transform φ k( ) , where the singularity caused by the
denominator selects the value of k. Thus, considering the
integration of eqn (5) over the spatial frequencies, we
examine the quantity
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on the circle defined by ε2 + η2 = k2. Substituting ε = k cos θ,
η = k sin θ, d dn rdrd k drdε θ θ= = , considering first the
integration over r, and comparing with eqn (6) from
Baddour’s theorem 5, we have
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Rewriting the e
− ( )k2

2 term for the case where σy > σx

(as is common in 1-D linear arrays, where y represents the
elevational direction),
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where R y x
2 2 2= σ σ , and could be 4 to 100 depending on

the particular array.
No closed-form analytical solution to eqn (8) has been

found. However, for the special case of radial symmetry, where
R = 1, and on the x-axis, where y = 0, eqn (8) reduces to
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